Timezone: »
Previous works on sequential learning address the problem of forgetting in discriminative models. In this paper we consider the case of generative models. In particular, we investigate generative adversarial networks (GANs) in the task of learning new categories in a sequential fashion. We first show that sequential fine tuning renders the network unable to properly generate images from previous categories (i.e. forgetting). Addressing this problem, we propose Memory Replay GANs (MeRGANs), a conditional GAN framework that integrates a memory replay generator. We study two methods to prevent forgetting by leveraging these replays, namely joint training with replay and replay alignment. Qualitative and quantitative experimental results in MNIST, SVHN and LSUN datasets show that our memory replay approach can generate competitive images while significantly mitigating the forgetting of previous categories.
Author Information
Chenshen Wu (Computer Vision Center)
Luis Herranz (Computer Vision Center)
Xialei Liu (Computer Vision Center)
yaxing wang (Centre de Visió per Computador (CVC))
Joost van de Weijer (Computer Vision Center Barcelona)
Bogdan Raducanu (Computer Vision Center)
More from the Same Authors
-
2023 Poster: FeCAM: Exploiting the Heterogeneity of Class Distributions in Exemplar-Free Continual Learning »
Dipam Goswami · Yuyang Liu · Bartłomiej Twardowski · Joost van de Weijer -
2023 Poster: Dynamic Prompt Learning: Addressing Cross-Attention Leakage for Text-Based Image Editing »
kai wang · Fei Yang · Shiqi Yang · Muhammad Atif Butt · Joost van de Weijer -
2022 Workshop: Vision Transformers: Theory and applications »
Fahad Shahbaz Khan · Gul Varol · Salman Khan · Ping Luo · Rao Anwer · Ashish Vaswani · Hisham Cholakkal · Niki Parmar · Joost van de Weijer · Mubarak Shah -
2022 Spotlight: Lightning Talks 1B-4 »
Andrei Atanov · Shiqi Yang · Wanshan Li · Yongchang Hao · Ziquan Liu · Jiaxin Shi · Anton Plaksin · Jiaxiang Chen · Ziqi Pan · yaxing wang · Yuxin Liu · Stepan Martyanov · Alessandro Rinaldo · Yuhao Zhou · Li Niu · Qingyuan Yang · Andrei Filatov · Yi Xu · Liqing Zhang · Lili Mou · Ruomin Huang · Teresa Yeo · kai wang · Daren Wang · Jessica Hwang · Yuanhong Xu · Qi Qian · Hu Ding · Michalis Titsias · Shangling Jui · Ajay Sohmshetty · Lester Mackey · Joost van de Weijer · Hao Li · Amir Zamir · Xiangyang Ji · Antoni Chan · Rong Jin -
2022 Spotlight: Attracting and Dispersing: A Simple Approach for Source-free Domain Adaptation »
Shiqi Yang · yaxing wang · kai wang · Shangling Jui · Joost van de Weijer -
2022 Poster: Attracting and Dispersing: A Simple Approach for Source-free Domain Adaptation »
Shiqi Yang · yaxing wang · kai wang · Shangling Jui · Joost van de Weijer -
2021 Poster: Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation »
Shiqi Yang · yaxing wang · Joost van de Weijer · Luis Herranz · Shangling Jui -
2020 Poster: DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs »
yaxing wang · Lu Yu · Joost van de Weijer -
2020 Poster: RATT: Recurrent Attention to Transient Tasks for Continual Image Captioning »
Riccardo Del Chiaro · Bartłomiej Twardowski · Andrew Bagdanov · Joost van de Weijer -
2018 Poster: Image-to-image translation for cross-domain disentanglement »
Abel Gonzalez-Garcia · Joost van de Weijer · Yoshua Bengio -
2011 Poster: Portmanteau Vocabularies for Multi-Cue Image Representation »
Fahad S Khan · Joost van de Weijer · Andrew D Bagdanov · Maria Vanrell