Timezone: »
We present a new technique for deep reinforcement learning that automatically detects moving objects and uses the relevant information for action selection. The detection of moving objects is done in an unsupervised way by exploiting structure from motion. Instead of directly learning a policy from raw images, the agent first learns to detect and segment moving objects by exploiting flow information in video sequences. The learned representation is then used to focus the policy of the agent on the moving objects. Over time, the agent identifies which objects are critical for decision making and gradually builds a policy based on relevant moving objects. This approach, which we call Motion-Oriented REinforcement Learning (MOREL), is demonstrated on a suite of Atari games where the ability to detect moving objects reduces the amount of interaction needed with the environment to obtain a good policy. Furthermore, the resulting policy is more interpretable than policies that directly map images to actions or values with a black box neural network. We can gain insight into the policy by inspecting the segmentation and motion of each object detected by the agent. This allows practitioners to confirm whether a policy is making decisions based on sensible information. Our code is available at https://github.com/vik-goel/MOREL.
Author Information
Vikash Goel (University of Waterloo)
Jameson Weng (University of Waterloo)
Pascal Poupart (University of Waterloo & RBC Borealis AI)
More from the Same Authors
-
2022 Poster: Optimality and Stability in Non-Convex Smooth Games »
Guojun Zhang · Pascal Poupart · Yaoliang Yu -
2022 : Attribute Controlled Dialogue Prompting »
Runcheng Liu · Ahmad Rashid · Ivan Kobyzev · Mehdi Rezaghoizadeh · Pascal Poupart -
2022 : Geometric attacks on batch normalization »
Amur Ghose · Apurv Gupta · Yaoliang Yu · Pascal Poupart -
2022 Spotlight: Optimality and Stability in Non-Convex Smooth Games »
Guojun Zhang · Pascal Poupart · Yaoliang Yu -
2022 : Attribute Controlled Dialogue Prompting »
Runcheng Liu · Ahmad Rashid · Ivan Kobyzev · Mehdi Rezaghoizadeh · Pascal Poupart -
2022 Workshop: Second Workshop on Efficient Natural Language and Speech Processing (ENLSP-II) »
Mehdi Rezagholizadeh · Peyman Passban · Yue Dong · Lili Mou · Pascal Poupart · Ali Ghodsi · Qun Liu -
2022 Poster: Uncertainty-Aware Reinforcement Learning for Risk-Sensitive Player Evaluation in Sports Game »
Guiliang Liu · Yudong Luo · Oliver Schulte · Pascal Poupart -
2021 : Best Papers and Closing Remarks »
Ali Ghodsi · Pascal Poupart -
2021 : Panel Discussion »
Pascal Poupart · Ali Ghodsi · Luke Zettlemoyer · Sameer Singh · Kevin Duh · Yejin Choi · Lu Hou -
2021 Workshop: Efficient Natural Language and Speech Processing (Models, Training, and Inference) »
Mehdi Rezaghoizadeh · Lili Mou · Yue Dong · Pascal Poupart · Ali Ghodsi · Qun Liu -
2021 : Opening Speech »
Pascal Poupart -
2021 Poster: Quantifying and Improving Transferability in Domain Generalization »
Guojun Zhang · Han Zhao · Yaoliang Yu · Pascal Poupart -
2021 Poster: Learning Tree Interpretation from Object Representation for Deep Reinforcement Learning »
Guiliang Liu · Xiangyu Sun · Oliver Schulte · Pascal Poupart -
2020 Poster: Learning Agent Representations for Ice Hockey »
Guiliang Liu · Oliver Schulte · Pascal Poupart · Mike Rudd · Mehrsan Javan -
2020 Poster: Learning Dynamic Belief Graphs to Generalize on Text-Based Games »
Ashutosh Adhikari · Xingdi Yuan · Marc-Alexandre Côté · Mikuláš Zelinka · Marc-Antoine Rondeau · Romain Laroche · Pascal Poupart · Jian Tang · Adam Trischler · Will Hamilton -
2018 Workshop: Reinforcement Learning under Partial Observability »
Joni Pajarinen · Chris Amato · Pascal Poupart · David Hsu -
2018 Poster: Deep Homogeneous Mixture Models: Representation, Separation, and Approximation »
Priyank Jaini · Pascal Poupart · Yaoliang Yu -
2018 Poster: Online Structure Learning for Feed-Forward and Recurrent Sum-Product Networks »
Agastya Kalra · Abdullah Rashwan · Wei-Shou Hsu · Pascal Poupart · Prashant Doshi · George Trimponias -
2018 Poster: Monte-Carlo Tree Search for Constrained POMDPs »
Jongmin Lee · Geon-Hyeong Kim · Pascal Poupart · Kee-Eung Kim -
2016 Poster: Online Bayesian Moment Matching for Topic Modeling with Unknown Number of Topics »
Wei-Shou Hsu · Pascal Poupart -
2016 Poster: A Unified Approach for Learning the Parameters of Sum-Product Networks »
Han Zhao · Pascal Poupart · Geoffrey Gordon