Timezone: »

 
Poster
Hyperbolic Neural Networks
Octavian Ganea · Gary Becigneul · Thomas Hofmann

Thu Dec 06 02:00 PM -- 04:00 PM (PST) @ Room 210 #29

Hyperbolic spaces have recently gained momentum in the context of machine learning due to their high capacity and tree-likeliness properties. However, the representational power of hyperbolic geometry is not yet on par with Euclidean geometry, firstly because of the absence of corresponding hyperbolic neural network layers. Here, we bridge this gap in a principled manner by combining the formalism of Möbius gyrovector spaces with the Riemannian geometry of the Poincaré model of hyperbolic spaces. As a result, we derive hyperbolic versions of important deep learning tools: multinomial logistic regression, feed-forward and recurrent neural networks. This allows to embed sequential data and perform classification in the hyperbolic space. Empirically, we show that, even if hyperbolic optimization tools are limited, hyperbolic sentence embeddings either outperform or are on par with their Euclidean variants on textual entailment and noisy-prefix recognition tasks.

Author Information

Octavian Ganea (ETH Zurich)
Gary Becigneul (ETH Zürich & MPI Tübingen)
Thomas Hofmann (ETH Zurich)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors