Timezone: »
Neural networks have been used prominently in several machine learning and statistics applications. In general, the underlying optimization of neural networks is non-convex which makes analyzing their performance challenging. In this paper, we take another approach to this problem by constraining the network such that the corresponding optimization landscape has good theoretical properties without significantly compromising performance. In particular, for two-layer neural networks we introduce Porcupine Neural Networks (PNNs) whose weight vectors are constrained to lie over a finite set of lines. We show that most local optima of PNN optimizations are global while we have a characterization of regions where bad local optimizers may exist. Moreover, our theoretical and empirical results suggest that an unconstrained neural network can be approximated using a polynomially-large PNN.
Author Information
Soheil Feizi (University of Maryland, College Park)
Hamid Javadi (Rice University)
Jesse Zhang (Stanford University)
David Tse (Stanford University)
More from the Same Authors
-
2022 Poster: Hard ImageNet: Segmentations for Objects with Strong Spurious Cues »
Mazda Moayeri · Sahil Singla · Soheil Feizi -
2022 Poster: Explicit Tradeoffs between Adversarial and Natural Distributional Robustness »
Mazda Moayeri · Kiarash Banihashem · Soheil Feizi -
2022 Poster: Lethal Dose Conjecture on Data Poisoning »
Wenxiao Wang · Alexander Levine · Soheil Feizi -
2022 Poster: Toward Efficient Robust Training against Union of $\ell_p$ Threat Models »
Gaurang Sriramanan · Maharshi Gor · Soheil Feizi -
2022 Poster: Beyond the Best: Distribution Functional Estimation in Infinite-Armed Bandits »
Yifei Wang · Tavor Baharav · Yanjun Han · Jiantao Jiao · David Tse -
2022 Poster: Improved techniques for deterministic l2 robustness »
Sahil Singla · Soheil Feizi -
2021 Poster: Improving Deep Learning Interpretability by Saliency Guided Training »
Aya Abdelsalam Ismail · Hector Corrada Bravo · Soheil Feizi -
2020 : Opening Remarks »
Reinhard Heckel · Paul Hand · Soheil Feizi · Lenka Zdeborová · Richard Baraniuk -
2020 Workshop: Workshop on Deep Learning and Inverse Problems »
Reinhard Heckel · Paul Hand · Richard Baraniuk · Lenka Zdeborová · Soheil Feizi -
2020 Poster: Certifying Confidence via Randomized Smoothing »
Aounon Kumar · Alexander Levine · Soheil Feizi · Tom Goldstein -
2020 Poster: Robust Optimal Transport with Applications in Generative Modeling and Domain Adaptation »
Yogesh Balaji · Rama Chellappa · Soheil Feizi -
2020 Poster: Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks »
Wei-An Lin · Chun Pong Lau · Alexander Levine · Rama Chellappa · Soheil Feizi -
2020 Poster: Benchmarking Deep Learning Interpretability in Time Series Predictions »
Aya Abdelsalam Ismail · Mohamed Gunady · Hector Corrada Bravo · Soheil Feizi -
2020 Poster: (De)Randomized Smoothing for Certifiable Defense against Patch Attacks »
Alexander Levine · Soheil Feizi -
2019 : Soheil Feizi, "Certifiable Defenses against Adversarial Attacks" »
Soheil Feizi -
2019 Poster: Functional Adversarial Attacks »
Cassidy Laidlaw · Soheil Feizi -
2019 Poster: Quantum Wasserstein Generative Adversarial Networks »
Shouvanik Chakrabarti · Huang Yiming · Tongyang Li · Soheil Feizi · Xiaodi Wu -
2019 Poster: Ultra Fast Medoid Identification via Correlated Sequential Halving »
Tavor Baharav · David Tse -
2019 Poster: Input-Cell Attention Reduces Vanishing Saliency of Recurrent Neural Networks »
Aya Abdelsalam Ismail · Mohamed Gunady · Luiz Pessoa · Hector Corrada Bravo · Soheil Feizi -
2018 Poster: A Convex Duality Framework for GANs »
Farzan Farnia · David Tse -
2017 Poster: Tensor Biclustering »
Soheil Feizi · Hamid Javadi · David Tse -
2017 Poster: NeuralFDR: Learning Discovery Thresholds from Hypothesis Features »
Fei Xia · Martin J Zhang · James Zou · David Tse -
2016 Poster: A Minimax Approach to Supervised Learning »
Farzan Farnia · David Tse -
2015 Poster: Discrete Rényi Classifiers »
Meisam Razaviyayn · Farzan Farnia · David Tse -
2014 Poster: Biclustering Using Message Passing »
Luke O'Connor · Soheil Feizi