Timezone: »
Generative adversarial networks (GANs) have achieved significant success in generating real-valued data. However, the discrete nature of text hinders the application of GAN to text-generation tasks. Instead of using the standard GAN objective, we propose to improve text-generation GAN via a novel approach inspired by optimal transport. Specifically, we consider matching the latent feature distributions of real and synthetic sentences using a novel metric, termed the feature-mover's distance (FMD). This formulation leads to a highly discriminative critic and easy-to-optimize objective, overcoming the mode-collapsing and brittle-training problems in existing methods. Extensive experiments are conducted on a variety of tasks to evaluate the proposed model empirically, including unconditional text generation, style transfer from non-parallel text, and unsupervised cipher cracking. The proposed model yields superior performance, demonstrating wide applicability and effectiveness.
Author Information
Liqun Chen (Duke University)
Shuyang Dai (Duke University)
Chenyang Tao (Duke University)
Haichao Zhang (Baidu Research)
Zhe Gan (Microsoft)
Dinghan Shen (Duke University)
Yizhe Zhang (Microsoft Research)
Guoyin Wang (Duke University)
Dinghan Shen (Duke University)
Lawrence Carin (Duke University)
More from the Same Authors
-
2021 Spotlight: Supercharging Imbalanced Data Learning With Energy-based Contrastive Representation Transfer »
Junya Chen · Zidi Xiu · Benjamin Goldstein · Ricardo Henao · Lawrence Carin · Chenyang Tao -
2022 : CAM-GAN: Continual Adaptation Modules for Generative Adversarial Networks »
Sakshi Varshney · Vinay Verma · Srijith PK · Piyush Rai · Lawrence Carin -
2022 : Weakly Supervised Data Augmentation Through Prompting for Dialogue Understanding »
Maximillian Chen · Alexandros Papangelis · Chenyang Tao · Andy Rosenbaum · Seokhwan Kim · Yang Liu · Zhou Yu · Dilek Hakkani-Tur -
2022 Poster: Towards Safe Reinforcement Learning with a Safety Editor Policy »
Haonan Yu · Wei Xu · Haichao Zhang -
2022 Poster: Tight Mutual Information Estimation With Contrastive Fenchel-Legendre Optimization »
Qing Guo · Junya Chen · Dong Wang · Yuewei Yang · Xinwei Deng · Jing Huang · Larry Carin · Fan Li · Chenyang Tao -
2022 Poster: PaCo: Parameter-Compositional Multi-task Reinforcement Learning »
Lingfeng Sun · Haichao Zhang · Wei Xu · Masayoshi TOMIZUKA -
2021 Poster: Supercharging Imbalanced Data Learning With Energy-based Contrastive Representation Transfer »
Junya Chen · Zidi Xiu · Benjamin Goldstein · Ricardo Henao · Lawrence Carin · Chenyang Tao -
2021 Poster: CAM-GAN: Continual Adaptation Modules for Generative Adversarial Networks »
Sakshi Varshney · Vinay Kumar Verma · P. K. Srijith · Lawrence Carin · Piyush Rai -
2021 Poster: TAAC: Temporally Abstract Actor-Critic for Continuous Control »
Haonan Yu · Wei Xu · Haichao Zhang -
2020 Poster: GAN Memory with No Forgetting »
Yulai Cong · Miaoyun Zhao · Jianqiao Li · Sijia Wang · Lawrence Carin -
2020 Poster: Reconsidering Generative Objectives For Counterfactual Reasoning »
Danni Lu · Chenyang Tao · Junya Chen · Fan Li · Feng Guo · Lawrence Carin -
2020 Poster: AutoSync: Learning to Synchronize for Data-Parallel Distributed Deep Learning »
Hao Zhang · Yuan Li · Zhijie Deng · Xiaodan Liang · Lawrence Carin · Eric Xing -
2020 Poster: Perturbing Across the Feature Hierarchy to Improve Standard and Strict Blackbox Attack Transferability »
Nathan Inkawhich · Kevin J Liang · Binghui Wang · Matthew Inkawhich · Lawrence Carin · Yiran Chen -
2020 Poster: Large-Scale Adversarial Training for Vision-and-Language Representation Learning »
Zhe Gan · Yen-Chun Chen · Linjie Li · Chen Zhu · Yu Cheng · Jingjing Liu -
2020 Spotlight: Large-Scale Adversarial Training for Vision-and-Language Representation Learning »
Zhe Gan · Yen-Chun Chen · Linjie Li · Chen Zhu · Yu Cheng · Jingjing Liu -
2020 Poster: Calibrating CNNs for Lifelong Learning »
Pravendra Singh · Vinay Kumar Verma · Pratik Mazumder · Lawrence Carin · Piyush Rai -
2019 : Poster Session »
Matthia Sabatelli · Adam Stooke · Amir Abdi · Paulo Rauber · Leonard Adolphs · Ian Osband · Hardik Meisheri · Karol Kurach · Johannes Ackermann · Matt Benatan · GUO ZHANG · Chen Tessler · Dinghan Shen · Mikayel Samvelyan · Riashat Islam · Murtaza Dalal · Luke Harries · Andrey Kurenkov · Konrad Żołna · Sudeep Dasari · Kristian Hartikainen · Ofir Nachum · Kimin Lee · Markus Holzleitner · Vu Nguyen · Francis Song · Christopher Grimm · Felipe Leno da Silva · Yuping Luo · Yifan Wu · Alex Lee · Thomas Paine · Wei-Yang Qu · Daniel Graves · Yannis Flet-Berliac · Yunhao Tang · Suraj Nair · Matthew Hausknecht · Akhil Bagaria · Simon Schmitt · Bowen Baker · Paavo Parmas · Benjamin Eysenbach · Lisa Lee · Siyu Lin · Daniel Seita · Abhishek Gupta · Riley Simmons-Edler · Yijie Guo · Kevin Corder · Vikash Kumar · Scott Fujimoto · Adam Lerer · Ignasi Clavera Gilaberte · Nicholas Rhinehart · Ashvin Nair · Ge Yang · Lingxiao Wang · Sungryull Sohn · J. Fernando Hernandez-Garcia · Xian Yeow Lee · Rupesh Srivastava · Khimya Khetarpal · Chenjun Xiao · Luckeciano Carvalho Melo · Rishabh Agarwal · Tianhe Yu · Glen Berseth · Devendra Singh Chaplot · Jie Tang · Anirudh Srinivasan · Tharun Kumar Reddy Medini · Aaron Havens · Misha Laskin · Asier Mujika · Rohan Saphal · Joseph Marino · Alex Ray · Joshua Achiam · Ajay Mandlekar · Zhuang Liu · Danijar Hafner · Zhiwen Tang · Ted Xiao · Michael Walton · Jeff Druce · Ferran Alet · Zhang-Wei Hong · Stephanie Chan · Anusha Nagabandi · Hao Liu · Hao Sun · Ge Liu · Dinesh Jayaraman · John Co-Reyes · Sophia Sanborn -
2019 Poster: Improving Textual Network Learning with Variational Homophilic Embeddings »
Wenlin Wang · Chenyang Tao · Zhe Gan · Guoyin Wang · Liqun Chen · Xinyuan Zhang · Ruiyi Zhang · Qian Yang · Ricardo Henao · Lawrence Carin -
2019 Poster: Ouroboros: On Accelerating Training of Transformer-Based Language Models »
Qian Yang · Zhouyuan Huo · Wenlin Wang · Lawrence Carin -
2019 Poster: Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching »
Hongteng Xu · Dixin Luo · Lawrence Carin -
2019 Poster: Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training »
Haichao Zhang · Jianyu Wang -
2019 Poster: Kernel-Based Approaches for Sequence Modeling: Connections to Neural Methods »
Kevin J Liang · Guoyin Wang · Yitong Li · Ricardo Henao · Lawrence Carin -
2019 Poster: Certified Adversarial Robustness with Additive Noise »
Bai Li · Changyou Chen · Wenlin Wang · Lawrence Carin -
2019 Poster: On Fenchel Mini-Max Learning »
Chenyang Tao · Liqun Chen · Shuyang Dai · Junya Chen · Ke Bai · Dong Wang · Jianfeng Feng · Wenlian Lu · Georgiy Bobashev · Lawrence Carin -
2018 : Poster Session 1 »
Kyle H Ambert · Brandon Araki · Xiya Cao · Sungjoon Choi · Hao(Jackson) Cui · Jonas Degrave · Yaqi Duan · Mattie Fellows · Carlos Florensa · Karan Goel · Aditya Gopalan · Ming-Xu Huang · Jonathan Hunt · Cyril Ibrahim · Brian Ichter · Maximilian Igl · Zheng Tracy Ke · Igor Kiselev · Anuj Mahajan · Arash Mehrjou · Karl Pertsch · Alexandre Piche · Nicholas Rhinehart · Thomas Ringstrom · Reazul Hasan Russel · Oleh Rybkin · Ion Stoica · Sharad Vikram · Angelina Wang · Ting-Han Wei · Abigail H Wen · I-Chen Wu · Zhengwei Wu · Linhai Xie · Dinghan Shen -
2018 : Spotlights 1 »
Ming-Xu Huang · Hao(Jackson) Cui · Arash Mehrjou · Yaqi Duan · Sharad Vikram · Angelina Wang · Karan Goel · Jonathan Hunt · Zhengwei Wu · Dinghan Shen · Mattie Fellows -
2018 Poster: Distilled Wasserstein Learning for Word Embedding and Topic Modeling »
Hongteng Xu · Wenlin Wang · Wei Liu · Lawrence Carin -
2018 Poster: Generating Informative and Diverse Conversational Responses via Adversarial Information Maximization »
Yizhe Zhang · Michel Galley · Jianfeng Gao · Zhe Gan · Xiujun Li · Chris Brockett · Bill Dolan -
2018 Poster: Diffusion Maps for Textual Network Embedding »
Xinyuan Zhang · Yitong Li · Dinghan Shen · Lawrence Carin -
2018 Spotlight: Diffusion Maps for Textual Network Embedding »
Xinyuan Zhang · Yitong Li · Dinghan Shen · Lawrence Carin -
2017 : Break + Poster (1) »
Devendra Singh Chaplot · CHIH-YAO MA · Simon Brodeur · Eri Matsuo · Ichiro Kobayashi · Seitaro Shinagawa · Koichiro Yoshino · Yuhong Guo · Ben Murdoch · Kanthashree Mysore Sathyendra · Daniel Ricks · Haichao Zhang · Joshua Peterson · Li Zhang · Mircea Mironenco · Peter Anderson · Mark Johnson · Kang Min Yoo · Guntis Barzdins · Ahmed H Zaidi · Martin Andrews · Sam Witteveen · SUBBAREDDY OOTA · Prashanth Vijayaraghavan · Ke Wang · Yan Zhu · Renars Liepins · Max Quinn · Amit Raj · Vincent Cartillier · Eric Chu · Ethan Caballero · Fritz Obermeyer -
2017 Spotlight: Targeting EEG/LFP Synchrony with Neural Nets »
Yitong Li · michael Murias · samantha Major · geraldine Dawson · Kafui Dzirasa · Lawrence Carin · David Carlson -
2017 Poster: Targeting EEG/LFP Synchrony with Neural Nets »
Yitong Li · michael Murias · samantha Major · geraldine Dawson · Kafui Dzirasa · Lawrence Carin · David Carlson -
2017 Poster: Triangle Generative Adversarial Networks »
Zhe Gan · Liqun Chen · Weiyao Wang · Yuchen Pu · Yizhe Zhang · Hao Liu · Chunyuan Li · Lawrence Carin -
2017 Poster: ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching »
Chunyuan Li · Hao Liu · Changyou Chen · Yuchen Pu · Liqun Chen · Ricardo Henao · Lawrence Carin -
2017 Poster: An inner-loop free solution to inverse problems using deep neural networks »
Kai Fan · Qi Wei · Lawrence Carin · Katherine Heller -
2017 Poster: VAE Learning via Stein Variational Gradient Descent »
Yuchen Pu · Zhe Gan · Ricardo Henao · Chunyuan Li · Shaobo Han · Lawrence Carin -
2017 Poster: Deconvolutional Paragraph Representation Learning »
Yizhe Zhang · Dinghan Shen · Guoyin Wang · Zhe Gan · Ricardo Henao · Lawrence Carin -
2017 Poster: Adversarial Symmetric Variational Autoencoder »
Yuchen Pu · Weiyao Wang · Ricardo Henao · Liqun Chen · Zhe Gan · Chunyuan Li · Lawrence Carin -
2017 Poster: A Probabilistic Framework for Nonlinearities in Stochastic Neural Networks »
Qinliang Su · xuejun Liao · Lawrence Carin -
2017 Poster: Scalable Model Selection for Belief Networks »
Zhao Song · Yusuke Muraoka · Ryohei Fujimaki · Lawrence Carin -
2017 Poster: Cross-Spectral Factor Analysis »
Neil Gallagher · Kyle Ulrich · Austin Talbot · Kafui Dzirasa · Lawrence Carin · David Carlson -
2016 Poster: Towards Unifying Hamiltonian Monte Carlo and Slice Sampling »
Yizhe Zhang · Xiangyu Wang · Changyou Chen · Ricardo Henao · Kai Fan · Lawrence Carin -
2016 Poster: Variational Autoencoder for Deep Learning of Images, Labels and Captions »
Yunchen Pu · Zhe Gan · Ricardo Henao · Xin Yuan · Chunyuan Li · Andrew Stevens · Lawrence Carin -
2016 Poster: Linear Feature Encoding for Reinforcement Learning »
Zhao Song · Ronald Parr · Xuejun Liao · Lawrence Carin -
2016 Poster: Stochastic Gradient MCMC with Stale Gradients »
Changyou Chen · Nan Ding · Chunyuan Li · Yizhe Zhang · Lawrence Carin -
2015 Poster: GP Kernels for Cross-Spectrum Analysis »
Kyle R Ulrich · David Carlson · Kafui Dzirasa · Lawrence Carin -
2015 Poster: Deep Poisson Factor Modeling »
Ricardo Henao · Zhe Gan · James Lu · Lawrence Carin -
2015 Poster: Preconditioned Spectral Descent for Deep Learning »
David Carlson · Edo Collins · Ya-Ping Hsieh · Lawrence Carin · Volkan Cevher -
2015 Poster: Large-Scale Bayesian Multi-Label Learning via Topic-Based Label Embeddings »
Piyush Rai · Changwei Hu · Ricardo Henao · Lawrence Carin -
2015 Spotlight: Large-Scale Bayesian Multi-Label Learning via Topic-Based Label Embeddings »
Piyush Rai · Changwei Hu · Ricardo Henao · Lawrence Carin -
2015 Poster: On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators »
Changyou Chen · Nan Ding · Lawrence Carin -
2015 Poster: Deep Temporal Sigmoid Belief Networks for Sequence Modeling »
Zhe Gan · Chunyuan Li · Ricardo Henao · David Carlson · Lawrence Carin -
2014 Poster: Analysis of Brain States from Multi-Region LFP Time-Series »
Kyle R Ulrich · David Carlson · Wenzhao Lian · Jana S Borg · Kafui Dzirasa · Lawrence Carin -
2014 Poster: Scale Adaptive Blind Deblurring »
Haichao Zhang · Jianchao Yang -
2014 Poster: Bayesian Nonlinear Support Vector Machines and Discriminative Factor Modeling »
Ricardo Henao · Xin Yuan · Lawrence Carin -
2014 Poster: Compressive Sensing of Signals from a GMM with Sparse Precision Matrices »
Jianbo Yang · Xuejun Liao · Minhua Chen · Lawrence Carin -
2014 Poster: On the relations of LFPs & Neural Spike Trains »
David Carlson · Jana Schaich Borg · Kafui Dzirasa · Lawrence Carin -
2014 Poster: Dynamic Rank Factor Model for Text Streams »
Shaobo Han · Lin Du · Esther Salazar · Lawrence Carin -
2013 Poster: Dynamic Clustering via Asymptotics of the Dependent Dirichlet Process Mixture »
Trevor Campbell · Miao Liu · Brian Kulis · Jonathan How · Lawrence Carin -
2013 Poster: Designed Measurements for Vector Count Data »
Liming Wang · David Carlson · Miguel Rodrigues · David Wilcox · Robert Calderbank · Lawrence Carin -
2013 Poster: Non-Uniform Camera Shake Removal Using a Spatially-Adaptive Sparse Penalty »
Haichao Zhang · David Wipf -
2013 Poster: Integrated Non-Factorized Variational Inference »
Shaobo Han · Xuejun Liao · Lawrence Carin -
2013 Poster: Real-Time Inference for a Gamma Process Model of Neural Spiking »
David Carlson · Vinayak Rao · Joshua T Vogelstein · Lawrence Carin -
2013 Oral: Non-Uniform Camera Shake Removal Using a Spatially-Adaptive Sparse Penalty »
Haichao Zhang · David Wipf -
2012 Workshop: Bayesian Nonparametric Models For Reliable Planning And Decision-Making Under Uncertainty »
Jonathan How · Lawrence Carin · John Fisher III · Michael Jordan · Alborz Geramifard -
2012 Poster: Joint Modeling of a Matrix with Associated Text via Latent Binary Features »
XianXing Zhang · Lawrence Carin -
2012 Poster: Augment-and-Conquer Negative Binomial Processes »
Mingyuan Zhou · Lawrence Carin -
2012 Spotlight: Augment-and-Conquer Negative Binomial Processes »
Mingyuan Zhou · Lawrence Carin -
2011 Poster: On the Analysis of Multi-Channel Neural Spike Data »
Bo Chen · David Carlson · Lawrence Carin -
2011 Poster: The Kernel Beta Process »
Lu Ren · Yingjian Wang · David B Dunson · Lawrence Carin -
2011 Spotlight: The Kernel Beta Process »
Lu Ren · Yingjian Wang · David B Dunson · Lawrence Carin -
2011 Poster: Hierarchical Topic Modeling for Analysis of Time-Evolving Personal Choices »
XianXing Zhang · David B Dunson · Lawrence Carin -
2010 Poster: Joint Analysis of Time-Evolving Binary Matrices and Associated Documents »
Eric X Wang · Dehong Liu · Jorge G Silva · David B Dunson · Lawrence Carin -
2009 Poster: A Bayesian Model for Simultaneous Image Clustering, Annotation and Object Segmentation »
Lan Du · Lu Ren · David B Dunson · Lawrence Carin -
2009 Poster: Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations »
Mingyuan Zhou · Haojun Chen · John Paisley · Lu Ren · Guillermo Sapiro · Lawrence Carin -
2009 Poster: Learning to Explore and Exploit in POMDPs »
Chenghui Cai · Xuejun Liao · Lawrence Carin -
2008 Workshop: Cost Sensitive Learning »
Balaji R Krishnapuram · Shipeng Yu · Oksana Yakhnenko · R. Bharat Rao · Lawrence Carin -
2007 Poster: Semi-Supervised Multitask Learning »
Qiuhua Liu · Xuejun Liao · Lawrence Carin -
2007 Spotlight: Semi-Supervised Multitask Learning »
Qiuhua Liu · Xuejun Liao · Lawrence Carin