Timezone: »
Graph Convolutional Networks (GCNs) have become a crucial tool on learning representations of graph vertices. The main challenge of adapting GCNs on large-scale graphs is the scalability issue that it incurs heavy cost both in computation and memory due to the uncontrollable neighborhood expansion across layers. In this paper, we accelerate the training of GCNs through developing an adaptive layer-wise sampling method. By constructing the network layer by layer in a top-down passway, we sample the lower layer conditioned on the top one, where the sampled neighborhoods are shared by different parent nodes and the over expansion is avoided owing to the fixed-size sampling. More importantly, the proposed sampler is adaptive and applicable for explicit variance reduction, which in turn enhances the training of our method. Furthermore, we propose a novel and economical approach to promote the message passing over distant nodes by applying skip connections. Intensive experiments on several benchmarks verify the effectiveness of our method regarding the classification accuracy while enjoying faster convergence speed.
Author Information
Wenbing Huang (Tencent AI Lab)
Tong Zhang (The Australian National University)
Yu Rong (Tencent AI Lab)
Junzhou Huang (University of Texas at Arlington / Tencent AI Lab)
More from the Same Authors
-
2021 Poster: Functionally Regionalized Knowledge Transfer for Low-resource Drug Discovery »
Huaxiu Yao · Ying Wei · Long-Kai Huang · Ding Xue · Junzhou Huang · Zhenhui (Jessie) Li -
2021 Poster: Not All Low-Pass Filters are Robust in Graph Convolutional Networks »
Heng Chang · Yu Rong · Tingyang Xu · Yatao Bian · Shiji Zhou · Xin Wang · Junzhou Huang · Wenwu Zhu -
2020 Poster: Revisiting Parameter Sharing for Automatic Neural Channel Number Search »
Jiaxing Wang · Haoli Bai · Jiaxiang Wu · Xupeng Shi · Junzhou Huang · Irwin King · Michael R Lyu · Jian Cheng -
2020 Poster: Dirichlet Graph Variational Autoencoder »
Jia Li · Jianwei Yu · Jiajin Li · Honglei Zhang · Kangfei Zhao · Yu Rong · Hong Cheng · Junzhou Huang -
2020 Poster: RetroXpert: Decompose Retrosynthesis Prediction Like A Chemist »
Chaochao Yan · Qianggang Ding · Peilin Zhao · Shuangjia Zheng · JINYU YANG · Yang Yu · Junzhou Huang -
2020 Spotlight: RetroXpert: Decompose Retrosynthesis Prediction Like A Chemist »
Chaochao Yan · Qianggang Ding · Peilin Zhao · Shuangjia Zheng · JINYU YANG · Yang Yu · Junzhou Huang -
2020 Poster: Self-Supervised Graph Transformer on Large-Scale Molecular Data »
Yu Rong · Yatao Bian · Tingyang Xu · Weiyang Xie · Ying Wei · Wenbing Huang · Junzhou Huang -
2020 Poster: Deep Multimodal Fusion by Channel Exchanging »
Yikai Wang · Wenbing Huang · Fuchun Sun · Tingyang Xu · Yu Rong · Junzhou Huang -
2020 Poster: Adversarial Sparse Transformer for Time Series Forecasting »
Sifan Wu · Xi Xiao · Qianggang Ding · Peilin Zhao · Ying Wei · Junzhou Huang -
2019 Poster: Hyperparameter Learning via Distributional Transfer »
Ho Chung Law · Peilin Zhao · Leung Sing Chan · Junzhou Huang · Dino Sejdinovic -
2019 Poster: DTWNet: a Dynamic Time Warping Network »
Xingyu Cai · Tingyang Xu · Jinfeng Yi · Junzhou Huang · Sanguthevar Rajasekaran -
2019 Poster: NAT: Neural Architecture Transformer for Accurate and Compact Architectures »
Yong Guo · Yin Zheng · Mingkui Tan · Qi Chen · Jian Chen · Peilin Zhao · Junzhou Huang -
2019 Poster: Imitation Learning from Observations by Minimizing Inverse Dynamics Disagreement »
Chao Yang · Xiaojian Ma · Wenbing Huang · Fuchun Sun · Huaping Liu · Junzhou Huang · Chuang Gan -
2019 Spotlight: Imitation Learning from Observations by Minimizing Inverse Dynamics Disagreement »
Chao Yang · Xiaojian Ma · Wenbing Huang · Fuchun Sun · Huaping Liu · Junzhou Huang · Chuang Gan -
2018 : Poster presentations »
Simon Wiedemann · Huan Wang · Ivan Zhang · Chong Wang · Mohammad Javad Shafiee · Rachel Manzelli · Wenbing Huang · Tassilo Klein · Lifu Zhang · Ashutosh Adhikari · Faisal Qureshi · Giuseppe Castiglione -
2018 Poster: Discrimination-aware Channel Pruning for Deep Neural Networks »
Zhuangwei Zhuang · Mingkui Tan · Bohan Zhuang · Jing Liu · Yong Guo · Qingyao Wu · Junzhou Huang · Jinhui Zhu -
2018 Poster: Weakly Supervised Dense Event Captioning in Videos »
Xin Wang · Wenbing Huang · Chuang Gan · Jingdong Wang · Wenwu Zhu · Junzhou Huang -
2017 Poster: Efficient Optimization for Linear Dynamical Systems with Applications to Clustering and Sparse Coding »
Wenbing Huang · Mehrtash Harandi · Tong Zhang · Lijie Fan · Fuchun Sun · Junzhou Huang -
2017 Poster: Deep Subspace Clustering Networks »
Pan Ji · Tong Zhang · Hongdong Li · Mathieu Salzmann · Ian Reid -
2012 Poster: Compressive Sensing MRI with Wavelet Tree Sparsity »
Chen Chen · Junzhou Huang