Timezone: »
Neural models operating over structured spaces such as knowledge graphs require a continuous embedding of the discrete elements of this space (such as entities) as well as the relationships between them. Relational embeddings with high expressivity, however, have high model complexity, making them computationally difficult to train. We propose a new family of embeddings for knowledge graphs that interpolate between a method with high model complexity and one, namely Holographic embeddings (HolE), with low dimensionality and high training efficiency. This interpolation, termed HolEx, is achieved by concatenating several linearly perturbed copies of original HolE. We formally characterize the number of perturbed copies needed to provably recover the full entity-entity or entity-relation interaction matrix, leveraging ideas from Haar wavelets and compressed sensing. In practice, using just a handful of Haar-based or random perturbation vectors results in a much stronger knowledge completion system. On the Freebase FB15K dataset, HolEx outperforms originally reported HolE by 14.7\% on the HITS@10 metric, and the current path-based state-of-the-art method, PTransE, by 4\% (absolute).
Author Information
Yexiang Xue (Purdue University)
Yang Yuan (Cornell University)
Zhitian Xu (Shanghai Jiaotong University)
Ashish Sabharwal (Allen Institute for AI)
More from the Same Authors
-
2022 : LILA: A Unified Benchmark for Mathematical Reasoning »
Swaroop Mishra · Matthew Finlayson · Pan Lu · Leonard Tang · Sean Welleck · Chitta Baral · Tanmay Rajpurohit · Oyvind Tafjord · Ashish Sabharwal · Peter Clark · Ashwin Kalyan -
2021 Poster: LSH-SMILE: Locality Sensitive Hashing Accelerated Simulation and Learning »
Chonghao Sima · Yexiang Xue -
2020 Poster: Belief Propagation Neural Networks »
Jonathan Kuck · Shuvam Chakraborty · Hao Tang · Rachel Luo · Jiaming Song · Ashish Sabharwal · Stefano Ermon -
2019 Poster: Approximating the Permanent by Sampling from Adaptive Partitions »
Jonathan Kuck · Tri Dao · Hamid Rezatofighi · Ashish Sabharwal · Stefano Ermon -
2019 Poster: Asymmetric Valleys: Beyond Sharp and Flat Local Minima »
Haowei He · Gao Huang · Yang Yuan -
2019 Spotlight: Asymmetric Valleys: Beyond Sharp and Flat Local Minima »
Haowei He · Gao Huang · Yang Yuan -
2019 Poster: Learning-Based Low-Rank Approximations »
Piotr Indyk · Ali Vakilian · Yang Yuan -
2017 Poster: Convergence Analysis of Two-layer Neural Networks with ReLU Activation »
Yuanzhi Li · Yang Yuan -
2016 Poster: Exploiting the Structure: Stochastic Gradient Methods Using Raw Clusters »
Zeyuan Allen-Zhu · Yang Yuan · Karthik Sridharan -
2016 Poster: Solving Marginal MAP Problems with NP Oracles and Parity Constraints »
Yexiang Xue · zhiyuan li · Stefano Ermon · Carla Gomes · Bart Selman -
2016 Poster: Adaptive Concentration Inequalities for Sequential Decision Problems »
Shengjia Zhao · Enze Zhou · Ashish Sabharwal · Stefano Ermon