Timezone: »
In this paper, we propose and analyze zeroth-order stochastic approximation algorithms for nonconvex and convex optimization. Specifically, we propose generalizations of the conditional gradient algorithm achieving rates similar to the standard stochastic gradient algorithm using only zeroth-order information. Furthermore, under a structural sparsity assumption, we first illustrate an implicit regularization phenomenon where the standard stochastic gradient algorithm with zeroth-order information adapts to the sparsity of the problem at hand by just varying the step-size. Next, we propose a truncated stochastic gradient algorithm with zeroth-order information, whose rate of convergence depends only poly-logarithmically on the dimensionality.
Author Information
Krishnakumar Balasubramanian (University of California, Davis)
Saeed Ghadimi (Princeton University)
More from the Same Authors
-
2022 Poster: A Projection-free Algorithm for Constrained Stochastic Multi-level Composition Optimization »
Tesi Xiao · Krishnakumar Balasubramanian · Saeed Ghadimi -
2022 Poster: Constrained Stochastic Nonconvex Optimization with State-dependent Markov Data »
Abhishek Roy · Krishnakumar Balasubramanian · Saeed Ghadimi -
2021 Poster: An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias »
Lu Yu · Krishnakumar Balasubramanian · Stanislav Volgushev · Murat Erdogdu -
2021 Poster: On Empirical Risk Minimization with Dependent and Heavy-Tailed Data »
Abhishek Roy · Krishnakumar Balasubramanian · Murat Erdogdu -
2020 Poster: Escaping Saddle-Point Faster under Interpolation-like Conditions »
Abhishek Roy · Krishnakumar Balasubramanian · Saeed Ghadimi · Prasant Mohapatra -
2020 Poster: On the Ergodicity, Bias and Asymptotic Normality of Randomized Midpoint Sampling Method »
Ye He · Krishnakumar Balasubramanian · Murat Erdogdu -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2017 Poster: Estimating High-dimensional Non-Gaussian Multiple Index Models via Stein’s Lemma »
Zhuoran Yang · Krishnakumar Balasubramanian · Zhaoran Wang · Han Liu