Timezone: »
The standard margin-based structured prediction commonly uses a maximum loss over all possible structured outputs. The large-margin formulation including latent variables not only results in a non-convex formulation but also increases the search space by a factor of the size of the latent space. Recent work has proposed the use of the maximum loss over random structured outputs sampled independently from some proposal distribution, with theoretical guarantees. We extend this work by including latent variables. We study a new family of loss functions under Gaussian perturbations and analyze the effect of the latent space on the generalization bounds. We show that the non-convexity of learning with latent variables originates naturally, as it relates to a tight upper bound of the Gibbs decoder distortion with respect to the latent space. Finally, we provide a formulation using random samples and relaxations that produces a tighter upper bound of the Gibbs decoder distortion up to a statistical accuracy, which enables a polynomial time evaluation of the objective function. We illustrate the method with synthetic experiments and a computer vision application.
Author Information
Kevin Bello (Purdue University)
Jean Honorio (Purdue University)
More from the Same Authors
-
2021 Spotlight: Fair Sparse Regression with Clustering: An Invex Relaxation for a Combinatorial Problem »
Adarsh Barik · Jean Honorio -
2022 Poster: Support Recovery in Sparse PCA with Incomplete Data »
Hanbyul Lee · Qifan Song · Jean Honorio -
2021 Poster: Inverse Reinforcement Learning in a Continuous State Space with Formal Guarantees »
Gregory Dexter · Kevin Bello · Jean Honorio -
2021 Poster: Fair Sparse Regression with Clustering: An Invex Relaxation for a Combinatorial Problem »
Adarsh Barik · Jean Honorio -
2020 Poster: Fairness constraints can help exact inference in structured prediction »
Kevin Bello · Jean Honorio -
2019 Poster: Learning Bayesian Networks with Low Rank Conditional Probability Tables »
Adarsh Barik · Jean Honorio -
2019 Poster: On the Correctness and Sample Complexity of Inverse Reinforcement Learning »
Abi Komanduru · Jean Honorio -
2019 Poster: Exact inference in structured prediction »
Kevin Bello · Jean Honorio -
2018 Poster: Information-theoretic Limits for Community Detection in Network Models »
Chuyang Ke · Jean Honorio -
2018 Poster: Computationally and statistically efficient learning of causal Bayes nets using path queries »
Kevin Bello · Jean Honorio -
2017 Poster: Learning Identifiable Gaussian Bayesian Networks in Polynomial Time and Sample Complexity »
Asish Ghoshal · Jean Honorio