Timezone: »
Learning to classify new categories based on just one or a few examples is a long-standing challenge in modern computer vision. In this work, we propose a simple yet effective method for few-shot (and one-shot) object recognition. Our approach is based on a modified auto-encoder, denoted delta-encoder, that learns to synthesize new samples for an unseen category just by seeing few examples from it. The synthesized samples are then used to train a classifier. The proposed approach learns to both extract transferable intra-class deformations, or "deltas", between same-class pairs of training examples, and to apply those deltas to the few provided examples of a novel class (unseen during training) in order to efficiently synthesize samples from that new class. The proposed method improves the state-of-the-art of one-shot object-recognition and performs comparably in the few-shot case.
Author Information
Eli Schwartz (IBM-Research)
Leonid Karlinsky (IBM-Research)
Joseph Shtok (IBM-Reseach)
Sivan Harary (IBM-Research)
Mattias Marder (IBM-Research)
Abhishek Kumar (Google)
Rogerio Feris (IBM Research AI)
Raja Giryes (Tel Aviv University)
Alex Bronstein (Technion)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Spotlight: Delta-encoder: an effective sample synthesis method for few-shot object recognition »
Wed. Dec 5th 02:50 -- 02:55 PM Room Room 220 E
More from the Same Authors
-
2021 : Select, Label, and Mix: Learning Discriminative Invariant Feature Representations for Partial Domain Adaptation »
Aadarsh Sahoo · Rameswar Panda · Rogerio Feris · Kate Saenko · Abir Das -
2021 : VAEs meet Diffusion Models: Efficient and High-Fidelity Generation »
Kushagra Pandey · Avideep Mukherjee · Piyush Rai · Abhishek Kumar -
2022 : Fast Implicit Constrained Optimization of Non-decomposable Objectives for Deep Networks »
Yatong Chen · Abhishek Kumar · Yang Liu · Ehsan Amid -
2022 : Stress-Testing Point Cloud Registration on Automotive LiDAR »
Amnon Drory · Raja Giryes · Shai Avidan -
2022 : Dropout Disagreement: A Recipe for Group Robustness with Fewer Annotations »
Tyler LaBonte · Abhishek Kumar · Vidya Muthukumar -
2022 Poster: Procedural Image Programs for Representation Learning »
Manel Baradad · Richard Chen · Jonas Wulff · Tongzhou Wang · Rogerio Feris · Antonio Torralba · Phillip Isola -
2022 Poster: How Transferable are Video Representations Based on Synthetic Data? »
Yo-whan Kim · Samarth Mishra · SouYoung Jin · Rameswar Panda · Hilde Kuehne · Leonid Karlinsky · Venkatesh Saligrama · Kate Saenko · Aude Oliva · Rogerio Feris -
2022 Poster: FETA: Towards Specializing Foundational Models for Expert Task Applications »
Amit Alfassy · Assaf Arbelle · Oshri Halimi · Sivan Harary · Roei Herzig · Eli Schwartz · Rameswar Panda · Michele Dolfi · Christoph Auer · Peter Staar · Kate Saenko · Rogerio Feris · Leonid Karlinsky -
2021 : VAEs meet Diffusion Models: Efficient and High-Fidelity Generation »
Kushagra Pandey · Avideep Mukherjee · Piyush Rai · Abhishek Kumar -
2021 : Extending the Vocabulary of Fictional Languages using Neural Networks »
Thomas Zacharias · Raja Giryes -
2021 Poster: Dynamic Distillation Network for Cross-Domain Few-Shot Recognition with Unlabeled Data »
Ashraful Islam · Chun-Fu (Richard) Chen · Rameswar Panda · Leonid Karlinsky · Rogerio Feris · Richard J. Radke -
2021 Poster: IA-RED$^2$: Interpretability-Aware Redundancy Reduction for Vision Transformers »
Bowen Pan · Rameswar Panda · Yifan Jiang · Zhangyang Wang · Rogerio Feris · Aude Oliva -
2021 Poster: SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization »
Amir Hertz · Or Perel · Raja Giryes · Olga Sorkine-hornung · Daniel Cohen-or -
2020 Poster: Robust Quantization: One Model to Rule Them All »
moran shkolnik · Brian Chmiel · Ron Banner · Gil Shomron · Yury Nahshan · Alex Bronstein · Uri Weiser -
2020 Poster: AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning »
Ximeng Sun · Rameswar Panda · Rogerio Feris · Kate Saenko -
2019 : Adaptive Multi-Task Neural Networks for Efficient Inference »
Rogerio Feris -
2019 : Poster session »
Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak -
2018 Poster: Dialog-based Interactive Image Retrieval »
Xiaoxiao Guo · Hui Wu · Yu Cheng · Steven Rennie · Gerald Tesauro · Rogerio Feris -
2018 Poster: Co-regularized Alignment for Unsupervised Domain Adaptation »
Abhishek Kumar · Prasanna Sattigeri · Kahini Wadhawan · Leonid Karlinsky · Rogerio Feris · Bill Freeman · Gregory Wornell -
2017 : Poster session + Coffee break »
Mikael Kågebäck · Igor Melnyk · Amir-Hossein Karimi · Gino Brunner · Ershad Banijamali · Chris Donahue · Jake Zhao · Giambattista Parascandolo · Valentin Thomas · Abhishek Kumar · Chris Burgess · Amanda Nilsson · Maria Larsson · Cian Eastwood · Momchil Peychev -
2017 Poster: Semi-supervised Learning with GANs: Manifold Invariance with Improved Inference »
Abhishek Kumar · Prasanna Sattigeri · Tom Fletcher -
2012 Poster: Simultaneously Leveraging Output and Task Structures for Multiple-Output Regression »
Piyush Rai · Abhishek Kumar · Hal Daumé III -
2011 Poster: Co-regularized Multi-view Spectral Clustering »
Abhishek Kumar · Piyush Rai · Hal Daumé III -
2010 Poster: Co-regularization Based Semi-supervised Domain Adaptation »
Hal Daumé III · Abhishek Kumar · Avishek Saha