Timezone: »
Optimization is an integral part of most machine learning systems and most numerical optimization schemes rely on the computation of derivatives. Therefore, frameworks for computing derivatives are an active area of machine learning research. Surprisingly, as of yet, no existing framework is capable of computing higher order matrix and tensor derivatives directly. Here, we close this fundamental gap and present an algorithmic framework for computing matrix and tensor derivatives that extends seamlessly to higher order derivatives. The framework can be used for symbolic as well as for forward and reverse mode automatic differentiation. Experiments show a speedup between one and four orders of magnitude over state-of-the-art frameworks when evaluating higher order derivatives.
Author Information
Sören Laue (Universitaet Jena)
Matthias Mitterreiter (Friedrich Schiller University Jena)
Joachim Giesen (Friedrich-Schiller-Universitat Jena)
More from the Same Authors
-
2022 Poster: Convexity Certificates from Hessians »
Julien Klaus · Niklas Merk · Konstantin Wiedom · Sören Laue · Joachim Giesen -
2019 : Posters and Coffee »
Sameer Kumar · Tomasz Kornuta · Oleg Bakhteev · Hui Guan · Xiaomeng Dong · Minsik Cho · Sören Laue · Theodoros Vasiloudis · Andreea Anghel · Erik Wijmans · Zeyuan Shang · Oleksii Kuchaiev · Ji Lin · Susan Zhang · Ligeng Zhu · Beidi Chen · Vinu Joseph · Jialin Ding · Jonathan Raiman · Ahnjae Shin · Vithursan Thangarasa · Anush Sankaran · Akhil Mathur · Martino Dazzi · Markus Löning · Darryl Ho · Emanuel Zgraggen · Supun Nakandala · Tomasz Kornuta · Rita Kuznetsova -
2019 Poster: GENO -- GENeric Optimization for Classical Machine Learning »
Sören Laue · Matthias Mitterreiter · Joachim Giesen -
2019 Demonstration: GENO -- Optimization for Classical Machine Learning Made Fast and Easy »
Sören Laue · Matthias Mitterreiter · Joachim Giesen -
2017 Demonstration: Matrix Calculus -- The Power of Symbolic Differentiation »
Sören Laue · Matthias Mitterreiter · Joachim Giesen -
2012 Poster: Approximating Concavely Parameterized Optimization Problems »
Joachim Giesen · Jens K Mueller · Sören Laue · Sascha Swiercy -
2012 Oral: Approximating Concavely Parameterized Optimization Problems »
Joachim Giesen · Jens K Mueller · Sören Laue · Sascha Swiercy