Timezone: »
Poster
Causal Discovery from Discrete Data using Hidden Compact Representation
Ruichu Cai · Jie Qiao · Kun Zhang · Zhenjie Zhang · Zhifeng Hao
Causal discovery from a set of observations is one of the fundamental problems across several disciplines. For continuous variables, recently a number of causal discovery methods have demonstrated their effectiveness in distinguishing the cause from effect by exploring certain properties of the conditional distribution, but causal discovery on categorical data still remains to be a challenging problem, because it is generally not easy to find a compact description of the causal mechanism for the true causal direction. In this paper we make an attempt to find a way to solve this problem by assuming a two-stage causal process: the first stage maps the cause to a hidden variable of a lower cardinality, and the second stage generates the effect from the hidden representation. In this way, the causal mechanism admits a simple yet compact representation. We show that under this model, the causal direction is identifiable under some weak conditions on the true causal mechanism. We also provide an effective solution to recover the above hidden compact representation within the likelihood framework. Empirical studies verify the effectiveness of the proposed approach on both synthetic and real-world data.
Author Information
Ruichu Cai (Guangdong University of Technology)
Jie Qiao (Guangdong University of Technology)
Kun Zhang (CMU)
Zhenjie Zhang (Singapore R&D, Yitu Technology Ltd.,)
Zhifeng Hao (Guangdong University of Technology)
More from the Same Authors
-
2022 : Tier Balancing: Towards Dynamic Fairness over Underlying Causal Factors »
Zeyu Tang · Yatong Chen · Yang Liu · Kun Zhang -
2022 : Scalable Causal Discovery with Score Matching »
Francesco Montagna · Nicoletta Noceti · Lorenzo Rosasco · Kun Zhang · Francesco Locatello -
2022 Spotlight: Latent Hierarchical Causal Structure Discovery with Rank Constraints »
Biwei Huang · Charles Jia Han Low · Feng Xie · Clark Glymour · Kun Zhang -
2022 : Kun Zhang: Causal Principles Meet Deep Learning: Successes and Challenges. »
Kun Zhang -
2022 : Kun Zhang: Causal Principles Meet Deep Learning: Successes and Challenges. »
Kun Zhang -
2022 Workshop: Causal Machine Learning for Real-World Impact »
Nick Pawlowski · Jeroen Berrevoets · Caroline Uhler · Kun Zhang · Mihaela van der Schaar · Cheng Zhang -
2022 Poster: On the Identifiability of Nonlinear ICA: Sparsity and Beyond »
Yujia Zheng · Ignavier Ng · Kun Zhang -
2022 Poster: Independence Testing-Based Approach to Causal Discovery under Measurement Error and Linear Non-Gaussian Models »
Haoyue Dai · Peter Spirtes · Kun Zhang -
2022 Poster: Latent Hierarchical Causal Structure Discovery with Rank Constraints »
Biwei Huang · Charles Jia Han Low · Feng Xie · Clark Glymour · Kun Zhang -
2022 Poster: MissDAG: Causal Discovery in the Presence of Missing Data with Continuous Additive Noise Models »
Erdun Gao · Ignavier Ng · Mingming Gong · Li Shen · Wei Huang · Tongliang Liu · Kun Zhang · Howard Bondell -
2022 Poster: Causal Discovery in Linear Latent Variable Models Subject to Measurement Error »
Yuqin Yang · AmirEmad Ghassami · Mohamed Nafea · Negar Kiyavash · Kun Zhang · Ilya Shpitser -
2022 Poster: Unsupervised Image-to-Image Translation with Density Changing Regularization »
Shaoan Xie · Qirong Ho · Kun Zhang -
2022 Poster: Factored Adaptation for Non-Stationary Reinforcement Learning »
Fan Feng · Biwei Huang · Kun Zhang · Sara Magliacane -
2022 Poster: Counterfactual Fairness with Partially Known Causal Graph »
Aoqi Zuo · Susan Wei · Tongliang Liu · Bo Han · Kun Zhang · Mingming Gong -
2022 Poster: Temporally Disentangled Representation Learning »
Weiran Yao · Guangyi Chen · Kun Zhang -
2022 Poster: Truncated Matrix Power Iteration for Differentiable DAG Learning »
Zhen Zhang · Ignavier Ng · Dong Gong · Yuhang Liu · Ehsan Abbasnejad · Mingming Gong · Kun Zhang · Javen Qinfeng Shi -
2021 Poster: SADGA: Structure-Aware Dual Graph Aggregation Network for Text-to-SQL »
Ruichu Cai · Jinjie Yuan · Boyan Xu · Zhifeng Hao -
2021 Poster: Domain Adaptation with Invariant Representation Learning: What Transformations to Learn? »
Petar Stojanov · Zijian Li · Mingming Gong · Ruichu Cai · Jaime Carbonell · Kun Zhang -
2021 Poster: Identification of Partially Observed Linear Causal Models: Graphical Conditions for the Non-Gaussian and Heterogeneous Cases »
Jeffrey Adams · Niels Hansen · Kun Zhang -
2021 Poster: Reliable Causal Discovery with Improved Exact Search and Weaker Assumptions »
Ignavier Ng · Yujia Zheng · Jiji Zhang · Kun Zhang -
2021 Poster: Instance-dependent Label-noise Learning under a Structural Causal Model »
Yu Yao · Tongliang Liu · Mingming Gong · Bo Han · Gang Niu · Kun Zhang -
2020 Workshop: Causal Discovery and Causality-Inspired Machine Learning »
Biwei Huang · Sara Magliacane · Kun Zhang · Danielle Belgrave · Elias Bareinboim · Daniel Malinsky · Thomas Richardson · Christopher Meek · Peter Spirtes · Bernhard Schölkopf -
2020 Poster: On the Role of Sparsity and DAG Constraints for Learning Linear DAGs »
Ignavier Ng · AmirEmad Ghassami · Kun Zhang -
2020 Session: Orals & Spotlights Track 27: Unsupervised/Probabilistic »
Marina Meila · Kun Zhang -
2020 Poster: A Causal View on Robustness of Neural Networks »
Cheng Zhang · Kun Zhang · Yingzhen Li -
2020 Poster: How do fair decisions fare in long-term qualification? »
Xueru Zhang · Ruibo Tu · Yang Liu · Mingyan Liu · Hedvig Kjellstrom · Kun Zhang · Cheng Zhang -
2020 Poster: Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs »
Feng Xie · Ruichu Cai · Biwei Huang · Clark Glymour · Zhifeng Hao · Kun Zhang -
2020 Spotlight: Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs »
Feng Xie · Ruichu Cai · Biwei Huang · Clark Glymour · Zhifeng Hao · Kun Zhang -
2020 Poster: Domain Adaptation as a Problem of Inference on Graphical Models »
Kun Zhang · Mingming Gong · Petar Stojanov · Biwei Huang · QINGSONG LIU · Clark Glymour -
2019 Poster: Neuropathic Pain Diagnosis Simulator for Causal Discovery Algorithm Evaluation »
Ruibo Tu · Kun Zhang · Bo Bertilson · Hedvig Kjellstrom · Cheng Zhang -
2019 Poster: Triad Constraints for Learning Causal Structure of Latent Variables »
Ruichu Cai · Feng Xie · Clark Glymour · Zhifeng Hao · Kun Zhang -
2019 Poster: Specific and Shared Causal Relation Modeling and Mechanism-Based Clustering »
Biwei Huang · Kun Zhang · Pengtao Xie · Mingming Gong · Eric Xing · Clark Glymour -
2019 Poster: Twin Auxilary Classifiers GAN »
Mingming Gong · Yanwu Xu · Chunyuan Li · Kun Zhang · Kayhan Batmanghelich -
2019 Spotlight: Twin Auxilary Classifiers GAN »
Mingming Gong · Yanwu Xu · Chunyuan Li · Kun Zhang · Kayhan Batmanghelich -
2019 Poster: Likelihood-Free Overcomplete ICA and Applications In Causal Discovery »
Chenwei DING · Mingming Gong · Kun Zhang · Dacheng Tao -
2019 Spotlight: Likelihood-Free Overcomplete ICA and Applications In Causal Discovery »
Chenwei DING · Mingming Gong · Kun Zhang · Dacheng Tao -
2018 Poster: Multi-domain Causal Structure Learning in Linear Systems »
AmirEmad Ghassami · Negar Kiyavash · Biwei Huang · Kun Zhang -
2018 Poster: Modeling Dynamic Missingness of Implicit Feedback for Recommendation »
Menghan Wang · Mingming Gong · Xiaolin Zheng · Kun Zhang -
2017 Poster: Learning Causal Structures Using Regression Invariance »
AmirEmad Ghassami · Saber Salehkaleybar · Negar Kiyavash · Kun Zhang