Timezone: »
Scaling model capacity has been vital in the success of deep learning. For a typical network, necessary compute resources and training time grow dramatically with model size. Conditional computation is a promising way to increase the number of parameters with a relatively small increase in resources. We propose a training algorithm that flexibly chooses neural modules based on the data to be processed. Both the decomposition and modules are learned end-to-end. In contrast to existing approaches, training does not rely on regularization to enforce diversity in module use. We apply modular networks both to image recognition and language modeling tasks, where we achieve superior performance compared to several baselines. Introspection reveals that modules specialize in interpretable contexts.
Author Information
Louis Kirsch (University College London & IDSIA)
Julius Kunze (University College London)
David Barber (University College London)
More from the Same Authors
-
2020 : Meta-Learning Backpropagation And Improving It »
Louis Kirsch -
2021 : Adaptive Optimization with Examplewise Gradients »
Julius Kunze · James Townsend · David Barber -
2021 : Exploring through Random Curiosity with General Value Functions »
Aditya Ramesh · Louis Kirsch · Sjoerd van Steenkiste · Jürgen Schmidhuber -
2021 : Introducing Symmetries to Black Box Meta Reinforcement Learning »
Louis Kirsch · Sebastian Flennerhag · Hado van Hasselt · Abram Friesen · Junhyuk Oh · Yutian Chen -
2021 : Introducing Symmetries to Black Box Meta Reinforcement Learning »
Louis Kirsch · Sebastian Flennerhag · Hado van Hasselt · Abram Friesen · Junhyuk Oh · Yutian Chen -
2022 : Meta-Learning General-Purpose Learning Algorithms with Transformers »
Louis Kirsch · Luke Metz · James Harrison · Jascha Sohl-Dickstein -
2022 : Meta-Learning General-Purpose Learning Algorithms with Transformers »
Louis Kirsch · Luke Metz · James Harrison · Jascha Sohl-Dickstein -
2022 : The Benefits of Model-Based Generalization in Reinforcement Learning »
Kenny Young · Aditya Ramesh · Louis Kirsch · Jürgen Schmidhuber -
2022 Poster: Exploring through Random Curiosity with General Value Functions »
Aditya Ramesh · Louis Kirsch · Sjoerd van Steenkiste · Jürgen Schmidhuber -
2021 : Poster Session 1 (gather.town) »
Hamed Jalali · Robert Hönig · Maximus Mutschler · Manuel Madeira · Abdurakhmon Sadiev · Egor Shulgin · Alasdair Paren · Pascal Esser · Simon Roburin · Julius Kunze · Agnieszka Słowik · Frederik Benzing · Futong Liu · Hongyi Li · Ryotaro Mitsuboshi · Grigory Malinovsky · Jayadev Naram · Zhize Li · Igor Sokolov · Sharan Vaswani -
2021 Poster: Meta Learning Backpropagation And Improving It »
Louis Kirsch · Jürgen Schmidhuber -
2020 : Q/A for invited talk #4 »
Louis Kirsch -
2020 : General meta-learning »
Louis Kirsch -
2019 : Poster session »
Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak -
2018 Poster: Online Structured Laplace Approximations for Overcoming Catastrophic Forgetting »
Hippolyt Ritter · Aleksandar Botev · David Barber -
2018 Poster: Generative Neural Machine Translation »
Harshil Shah · David Barber -
2017 Poster: Thinking Fast and Slow with Deep Learning and Tree Search »
Thomas Anthony · Zheng Tian · David Barber -
2017 Poster: Wider and Deeper, Cheaper and Faster: Tensorized LSTMs for Sequence Learning »
Zhen He · Shaobing Gao · Liang Xiao · Daxue Liu · Hangen He · David Barber