Timezone: »
Recent methods for learning a linear subspace from data corrupted by outliers are based on convex L1 and nuclear norm optimization and require the dimension of the subspace and the number of outliers to be sufficiently small [27]. In sharp contrast, the recently proposed Dual Principal Component Pursuit (DPCP) method [22] can provably handle subspaces of high dimension by solving a non-convex L1 optimization problem on the sphere. However, its geometric analysis is based on quantities that are difficult to interpret and are not amenable to statistical analysis. In this paper we provide a refined geometric analysis and a new statistical analysis that show that DPCP can tolerate as many outliers as the square of the number of inliers, thus improving upon other provably correct robust PCA methods. We also propose a scalable Projected Sub-Gradient Descent method (DPCP-PSGD) for solving the DPCP problem and show it admits linear convergence even though the underlying optimization problem is non-convex and non-smooth. Experiments on road plane detection from 3D point cloud data demonstrate that DPCP-PSGD can be more efficient than the traditional RANSAC algorithm, which is one of the most popular methods for such computer vision applications.
Author Information
Zhihui Zhu (Johns Hopkins University)
Yifan Wang (University of Washington)
Daniel Robinson (Johns Hopkins University)
Daniel Naiman (Johns Hopkins University)
René Vidal (Johns Hopkins University)
Manolis Tsakiris (ShanghaiTech University)
More from the Same Authors
-
2021 Spotlight: A Geometric Analysis of Neural Collapse with Unconstrained Features »
Zhihui Zhu · Tianyu Ding · Jinxin Zhou · Xiao Li · Chong You · Jeremias Sulam · Qing Qu -
2022 Poster: Neural Collapse with Normalized Features: A Geometric Analysis over the Riemannian Manifold »
Can Yaras · Peng Wang · Zhihui Zhu · Laura Balzano · Qing Qu -
2022 Poster: Are All Losses Created Equal: A Neural Collapse Perspective »
Jinxin Zhou · Chong You · Xiao Li · Kangning Liu · Sheng Liu · Qing Qu · Zhihui Zhu -
2022 Poster: Error Analysis of Tensor-Train Cross Approximation »
Zhen Qin · Alexander Lidiak · Zhexuan Gong · Gongguo Tang · Michael B Wakin · Zhihui Zhu -
2022 Poster: Revisiting Sparse Convolutional Model for Visual Recognition »
xili dai · Mingyang Li · Pengyuan Zhai · Shengbang Tong · Xingjian Gao · Shao-Lun Huang · Zhihui Zhu · Chong You · Yi Ma -
2021 Poster: Unlabeled Principal Component Analysis »
Yunzhen Yao · Liangzu Peng · Manolis Tsakiris -
2021 Poster: A Geometric Analysis of Neural Collapse with Unconstrained Features »
Zhihui Zhu · Tianyu Ding · Jinxin Zhou · Xiao Li · Chong You · Jeremias Sulam · Qing Qu -
2021 Poster: Only Train Once: A One-Shot Neural Network Training And Pruning Framework »
Tianyi Chen · Bo Ji · Tianyu Ding · Biyi Fang · Guanyi Wang · Zhihui Zhu · Luming Liang · Yixin Shi · Sheng Yi · Xiao Tu -
2021 Poster: Rank Overspecified Robust Matrix Recovery: Subgradient Method and Exact Recovery »
Lijun Ding · Liwei Jiang · Yudong Chen · Qing Qu · Zhihui Zhu -
2021 Poster: Convolutional Normalization: Improving Deep Convolutional Network Robustness and Training »
Sheng Liu · Xiao Li · Simon Zhai · Chong You · Zhihui Zhu · Carlos Fernandez-Granda · Qing Qu -
2020 Poster: Conformal Symplectic and Relativistic Optimization »
Guilherme Franca · Jeremias Sulam · Daniel Robinson · Rene Vidal -
2020 Spotlight: Conformal Symplectic and Relativistic Optimization »
Guilherme Franca · Jeremias Sulam · Daniel Robinson · Rene Vidal -
2020 Poster: Robust Recovery via Implicit Bias of Discrepant Learning Rates for Double Over-parameterization »
Chong You · Zhihui Zhu · Qing Qu · Yi Ma -
2020 Spotlight: Robust Recovery via Implicit Bias of Discrepant Learning Rates for Double Over-parameterization »
Chong You · Zhihui Zhu · Qing Qu · Yi Ma -
2019 : Keynote I – Rene Vidal (Johns Hopkins University) »
René Vidal -
2019 Poster: Distributed Low-rank Matrix Factorization With Exact Consensus »
Zhihui Zhu · Qiuwei Li · Xinshuo Yang · Gongguo Tang · Michael B Wakin -
2019 Poster: A Nonconvex Approach for Exact and Efficient Multichannel Sparse Blind Deconvolution »
Qing Qu · Xiao Li · Zhihui Zhu -
2019 Spotlight: A Nonconvex Approach for Exact and Efficient Multichannel Sparse Blind Deconvolution »
Qing Qu · Xiao Li · Zhihui Zhu -
2019 Poster: A Linearly Convergent Method for Non-Smooth Non-Convex Optimization on the Grassmannian with Applications to Robust Subspace and Dictionary Learning »
Zhihui Zhu · Tianyu Ding · Daniel Robinson · Manolis Tsakiris · René Vidal -
2018 Poster: Dropping Symmetry for Fast Symmetric Nonnegative Matrix Factorization »
Zhihui Zhu · Xiao Li · Kai Liu · Qiuwei Li -
2017 Poster: MarrNet: 3D Shape Reconstruction via 2.5D Sketches »
Jiajun Wu · Yifan Wang · Tianfan Xue · Xingyuan Sun · Bill Freeman · Josh Tenenbaum -
2012 Poster: Finding Exemplars from Pairwise Dissimilarities via Simultaneous Sparse Recovery »
Ehsan Elhamifar · Guillermo Sapiro · René Vidal -
2011 Poster: Sparse Manifold Clustering and Embedding »
Ehsan Elhamifar · René Vidal -
2006 Poster: Online Clustering of Moving Subspaces »
René Vidal