Timezone: »
Visual attention, derived from cognitive neuroscience, facilitates human perception on the most pertinent subset of the sensory data. Recently, significant efforts have been made to exploit attention schemes to advance computer vision systems. For visual tracking, it is often challenging to track target objects undergoing large appearance changes. Attention maps facilitate visual tracking by selectively paying attention to temporal robust features. Existing tracking-by-detection approaches mainly use additional attention modules to generate feature weights as the classifiers are not equipped with such mechanisms. In this paper, we propose a reciprocative learning algorithm to exploit visual attention for training deep classifiers. The proposed algorithm consists of feed-forward and backward operations to generate attention maps, which serve as regularization terms coupled with the original classification loss function for training. The deep classifier learns to attend to the regions of target objects robust to appearance changes. Extensive experiments on large-scale benchmark datasets show that the proposed attentive tracking method performs favorably against the state-of-the-art approaches.
Author Information
Shi Pu (Beijing University of Posts and Telecommunications)
YIBING SONG (Tencent AI Lab)
Chao Ma (University of Adelaide)
Honggang Zhang (Beijing University of Posts and Telecommunications)
Ming-Hsuan Yang (UC Merced / Google)
More from the Same Authors
-
2021 Spotlight: Intriguing Properties of Vision Transformers »
Muhammad Muzammal Naseer · Kanchana Ranasinghe · Salman H Khan · Munawar Hayat · Fahad Shahbaz Khan · Ming-Hsuan Yang -
2023 Poster: ARTIC3D: Learning Robust Articulated 3D Shapes from Noisy Web Image Collections »
Chun-Han Yao · Amit Raj · Wei-Chih Hung · Michael Rubinstein · Yuanzhen Li · Ming-Hsuan Yang · Varun Jampani -
2023 Poster: A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence »
Junyi Zhang · Charles Herrmann · Junhwa Hur · Luisa Polania Cabrera · Varun Jampani · Deqing Sun · Ming-Hsuan Yang -
2023 Poster: AIMS: All-Inclusive Multi-Level Segmentation »
Lu Qi · Jason Kuen · Weidong Guo · Jiuxiang Gu · Zhe Lin · Bo Du · Yu Xu · Ming-Hsuan Yang -
2023 Poster: Diffusion-SS3D: Diffusion Model for Semi-supervised 3D Object Detection »
Cheng-Ju Ho · Chen-Hsuan Tai · Yen-Yu Lin · Ming-Hsuan Yang · Yi-Hsuan Tsai -
2023 Poster: Module-wise Adaptive Distillation for Multimodality Foundation Models »
Chen Liang · Jiahui Yu · Ming-Hsuan Yang · Matthew Brown · Yin Cui · Tuo Zhao · Boqing Gong · Tianyi Zhou -
2023 Poster: SPAE: Semantic Pyramid AutoEncoder for Multimodal Generation with Frozen LLMs »
Lijun Yu · Yong Cheng · Zhiruo Wang · Vivek Kumar · Wolfgang Macherey · Yanping Huang · David Ross · Irfan Essa · Yonatan Bisk · Ming-Hsuan Yang · Kevin Murphy · Alexander Hauptmann · Lu Jiang -
2023 Poster: Video Timeline Modeling For News Story Understanding »
Meng Liu · Mingda Zhang · Jialu Liu · Hanjun Dai · Ming-Hsuan Yang · Shuiwang Ji · Zheyun Feng · Boqing Gong -
2022 Poster: LASSIE: Learning Articulated Shapes from Sparse Image Ensemble via 3D Part Discovery »
Chun-Han Yao · Wei-Chih Hung · Yuanzhen Li · Michael Rubinstein · Ming-Hsuan Yang · Varun Jampani -
2021 Poster: Intriguing Properties of Vision Transformers »
Muhammad Muzammal Naseer · Kanchana Ranasinghe · Salman H Khan · Munawar Hayat · Fahad Shahbaz Khan · Ming-Hsuan Yang -
2021 Poster: Learning 3D Dense Correspondence via Canonical Point Autoencoder »
An-Chieh Cheng · Xueting Li · Min Sun · Ming-Hsuan Yang · Sifei Liu -
2021 Poster: Exploring Cross-Video and Cross-Modality Signals for Weakly-Supervised Audio-Visual Video Parsing »
Yan-Bo Lin · Hung-Yu Tseng · Hsin-Ying Lee · Yen-Yu Lin · Ming-Hsuan Yang -
2021 Poster: Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning »
Chongjian GE · Youwei Liang · YIBING SONG · Jianbo Jiao · Jue Wang · Ping Luo -
2021 Poster: Learning Transferable Features for Point Cloud Detection via 3D Contrastive Co-training »
Zeng Yihan · Chunwei Wang · Yunbo Wang · Hang Xu · Chaoqiang Ye · Zhen Yang · Chao Ma -
2021 Poster: End-to-end Multi-modal Video Temporal Grounding »
Yi-Wen Chen · Yi-Hsuan Tsai · Ming-Hsuan Yang -
2020 Poster: Online Adaptation for Consistent Mesh Reconstruction in the Wild »
Xueting Li · Sifei Liu · Shalini De Mello · Kihwan Kim · Xiaolong Wang · Ming-Hsuan Yang · Jan Kautz -
2019 Poster: Quadratic Video Interpolation »
Xiangyu Xu · Li Siyao · Wenxiu Sun · Qian Yin · Ming-Hsuan Yang -
2019 Spotlight: Quadratic Video Interpolation »
Xiangyu Xu · Li Siyao · Wenxiu Sun · Qian Yin · Ming-Hsuan Yang -
2019 Poster: Joint-task Self-supervised Learning for Temporal Correspondence »
Xueting Li · Sifei Liu · Shalini De Mello · Xiaolong Wang · Jan Kautz · Ming-Hsuan Yang -
2019 Poster: Dancing to Music »
Hsin-Ying Lee · Xiaodong Yang · Ming-Yu Liu · Ting-Chun Wang · Yu-Ding Lu · Ming-Hsuan Yang · Jan Kautz -
2018 Poster: Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation »
Wenqi Ren · Jiawei Zhang · Lin Ma · Jinshan Pan · Xiaochun Cao · Wangmeng Zuo · Wei Liu · Ming-Hsuan Yang -
2018 Poster: Context-aware Synthesis and Placement of Object Instances »
Donghoon Lee · Sifei Liu · Jinwei Gu · Ming-Yu Liu · Ming-Hsuan Yang · Jan Kautz -
2017 Poster: Learning Affinity via Spatial Propagation Networks »
Sifei Liu · Shalini De Mello · Jinwei Gu · Guangyu Zhong · Ming-Hsuan Yang · Jan Kautz -
2017 Poster: Semi-Supervised Learning for Optical Flow with Generative Adversarial Networks »
Wei-Sheng Lai · Jia-Bin Huang · Ming-Hsuan Yang -
2017 Poster: Universal Style Transfer via Feature Transforms »
Yijun Li · Chen Fang · Jimei Yang · Zhaowen Wang · Xin Lu · Ming-Hsuan Yang -
2015 Poster: Weakly-supervised Disentangling with Recurrent Transformations for 3D View Synthesis »
Jimei Yang · Scott E Reed · Ming-Hsuan Yang · Honglak Lee