Timezone: »
Given samples from a probability distribution, anomaly detection is the problem of determining if a given point lies in a low-density region. This paper concerns calibrated anomaly detection, which is the practically relevant extension where we additionally wish to produce a confidence score for a point being anomalous. Building on a classification framework for anomaly detection, we show how minimisation of a suitably modified proper loss produces density estimates only for anomalous instances. We then show how to incorporate quantile control by relating our objective to a generalised version of the pinball loss. Finally, we show how to efficiently optimise the objective with kernelised scorer, by leveraging a recent result from the point process literature. The resulting objective captures a close relative of the one-class SVM as a special case.
Author Information
Aditya Menon (Google Research)
Robert Williamson (Australian National University & Data61)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Spotlight: A loss framework for calibrated anomaly detection »
Wed. Dec 5th 03:30 -- 03:35 PM Room Room 517 CD
More from the Same Authors
-
2019 : Poster Session »
Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis -
2019 Poster: A Primal-Dual link between GANs and Autoencoders »
Hisham Husain · Richard Nock · Robert Williamson -
2018 Poster: Constant Regret, Generalized Mixability, and Mirror Descent »
Zakaria Mhammedi · Robert Williamson -
2018 Spotlight: Constant Regret, Generalized Mixability, and Mirror Descent »
Zakaria Mhammedi · Robert Williamson -
2017 Poster: f-GANs in an Information Geometric Nutshell »
Richard Nock · Zac Cranko · Aditya K Menon · Lizhen Qu · Robert Williamson -
2017 Spotlight: f-GANs in an Information Geometric Nutshell »
Richard Nock · Zac Cranko · Aditya K Menon · Lizhen Qu · Robert Williamson -
2016 Poster: A scaled Bregman theorem with applications »
Richard Nock · Aditya Menon · Cheng Soon Ong -
2015 Poster: Learning with Symmetric Label Noise: The Importance of Being Unhinged »
Brendan van Rooyen · Aditya Menon · Robert Williamson -
2015 Spotlight: Learning with Symmetric Label Noise: The Importance of Being Unhinged »
Brendan van Rooyen · Aditya Menon · Robert Williamson -
2014 Poster: From Stochastic Mixability to Fast Rates »
Nishant Mehta · Robert Williamson -
2014 Oral: From Stochastic Mixability to Fast Rates »
Nishant Mehta · Robert Williamson -
2012 Poster: Mixability in Statistical Learning »
Tim van Erven · Peter Grünwald · Mark Reid · Robert Williamson -
2011 Workshop: Relations between machine learning problems - an approach to unify the field »
Robert Williamson · John Langford · Ulrike von Luxburg · Mark Reid · Jennifer Wortman Vaughan -
2011 Poster: Composite Multiclass Losses »
Elodie Vernet · Robert Williamson · Mark Reid -
2009 Workshop: Clustering: Science or art? Towards principled approaches »
Margareta Ackerman · Shai Ben-David · Avrim Blum · Isabelle Guyon · Ulrike von Luxburg · Robert Williamson · Reza Zadeh