Timezone: »

 
Poster
FRAGE: Frequency-Agnostic Word Representation
Chengyue Gong · Di He · Xu Tan · Tao Qin · Liwei Wang · Tie-Yan Liu

Tue Dec 04 07:45 AM -- 09:45 AM (PST) @ Room 517 AB #153

Continuous word representation (aka word embedding) is a basic building block in many neural network-based models used in natural language processing tasks. Although it is widely accepted that words with similar semantics should be close to each other in the embedding space, we find that word embeddings learned in several tasks are biased towards word frequency: the embeddings of high-frequency and low-frequency words lie in different subregions of the embedding space, and the embedding of a rare word and a popular word can be far from each other even if they are semantically similar. This makes learned word embeddings ineffective, especially for rare words, and consequently limits the performance of these neural network models. In order to mitigate the issue, in this paper, we propose a neat, simple yet effective adversarial training method to blur the boundary between the embeddings of high-frequency words and low-frequency words. We conducted comprehensive studies on ten datasets across four natural language processing tasks, including word similarity, language modeling, machine translation and text classification. Results show that we achieve higher performance than the baselines in all tasks.

Author Information

Chengyue Gong (Peking University)
Di He (Peking University)
Xu Tan
Tao Qin (Microsoft Research)
Liwei Wang (Peking University)
Tie-Yan Liu (Microsoft Research Asia)

Tie-Yan Liu is an assistant managing director of Microsoft Research Asia, leading the machine learning research area. He is very well known for his pioneer work on learning to rank and computational advertising, and his recent research interests include deep learning, reinforcement learning, and distributed machine learning. Many of his technologies have been transferred to Microsoft’s products and online services (such as Bing, Microsoft Advertising, Windows, Xbox, and Azure), and open-sourced through Microsoft Cognitive Toolkit (CNTK), Microsoft Distributed Machine Learning Toolkit (DMTK), and Microsoft Graph Engine. He has also been actively contributing to academic communities. He is an adjunct/honorary professor at Carnegie Mellon University (CMU), University of Nottingham, and several other universities in China. He has published 200+ papers in refereed conferences and journals, with over 17000 citations. He has won quite a few awards, including the best student paper award at SIGIR (2008), the most cited paper award at Journal of Visual Communications and Image Representation (2004-2006), the research break-through award (2012) and research-team-of-the-year award (2017) at Microsoft Research, and Top-10 Springer Computer Science books by Chinese authors (2015), and the most cited Chinese researcher by Elsevier (2017). He has been invited to serve as general chair, program committee chair, local chair, or area chair for a dozen of top conferences including SIGIR, WWW, KDD, ICML, NIPS, IJCAI, AAAI, ACL, ICTIR, as well as associate editor of ACM Transactions on Information Systems, ACM Transactions on the Web, and Neurocomputing. Tie-Yan Liu is a fellow of the IEEE, and a distinguished member of the ACM.

More from the Same Authors