Timezone: »
Recurrent networks of spiking neurons (RSNNs) underlie the astounding computing and learning capabilities of the brain. But computing and learning capabilities of RSNN models have remained poor, at least in comparison with ANNs. We address two possible reasons for that. One is that RSNNs in the brain are not randomly connected or designed according to simple rules, and they do not start learning as a tabula rasa network. Rather, RSNNs in the brain were optimized for their tasks through evolution, development, and prior experience. Details of these optimization processes are largely unknown. But their functional contribution can be approximated through powerful optimization methods, such as backpropagation through time (BPTT).
A second major mismatch between RSNNs in the brain and models is that the latter only show a small fraction of the dynamics of neurons and synapses in the brain. We include neurons in our RSNN model that reproduce one prominent dynamical process of biological neurons that takes place at the behaviourally relevant time scale of seconds: neuronal adaptation. We denote these networks as LSNNs because of their Long short-term memory. The inclusion of adapting neurons drastically increases the computing and learning capability of RSNNs if they are trained and configured by deep learning (BPTT combined with a rewiring algorithm that optimizes the network architecture). In fact, the computational performance of these RSNNs approaches for the first time that of LSTM networks. In addition RSNNs with adapting neurons can acquire abstract knowledge from prior learning in a Learning-to-Learn (L2L) scheme, and transfer that knowledge in order to learn new but related tasks from very few examples. We demonstrate this for supervised learning and reinforcement learning.
Author Information
Guillaume Bellec (Graz University of Technology)
Darjan Salaj (Graz University of Technology)
Anand Subramoney (Graz University of Technology)
Robert Legenstein (Graz University of Technology)
Wolfgang Maass (Graz University of Technology)
More from the Same Authors
-
2021 Poster: Local plasticity rules can learn deep representations using self-supervised contrastive predictions »
Bernd Illing · Jean Ventura · Guillaume Bellec · Wulfram Gerstner -
2021 Poster: Fitting summary statistics of neural data with a differentiable spiking network simulator »
Guillaume Bellec · Shuqi Wang · Alireza Modirshanechi · Johanni Brea · Wulfram Gerstner -
2020 Poster: H-Mem: Harnessing synaptic plasticity with Hebbian Memory Networks »
Thomas Limbacher · Robert Legenstein -
2020 Spotlight: H-Mem: Harnessing synaptic plasticity with Hebbian Memory Networks »
Thomas Limbacher · Robert Legenstein -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 : Contributed Talk #2: Slow processes of neurons enable a biologically plausible approximation to policy gradient »
Wolfgang Maass -
2019 : Coffee Break & Poster Session »
Samia Mohinta · Andrea Agostinelli · Alexandra Moringen · Jee Hang Lee · Yat Long Lo · Wolfgang Maass · Blue Sheffer · Colin Bredenberg · Benjamin Eysenbach · Liyu Xia · Efstratios Markou · Jan Lichtenberg · Pierre Richemond · Tony Zhang · JB Lanier · Baihan Lin · William Fedus · Glen Berseth · Marta Sarrico · Matthew Crosby · Stephen McAleer · Sina Ghiassian · Franz Scherr · Guillaume Bellec · Darjan Salaj · Arinbjörn Kolbeinsson · Matthew Rosenberg · Jaehoon Shin · Sang Wan Lee · Guillermo Cecchi · Irina Rish · Elias Hajek -
2018 Poster: Smoothed Analysis of Discrete Tensor Decomposition and Assemblies of Neurons »
Nima Anari · Constantinos Daskalakis · Wolfgang Maass · Christos Papadimitriou · Amin Saberi · Santosh Vempala -
2016 : Reward-based self-configuration of networks of spiking neurons »
Wolfgang Maass -
2016 : Robert Legenstein (Graz University of Technology) »
Robert Legenstein -
2015 Poster: Synaptic Sampling: A Bayesian Approach to Neural Network Plasticity and Rewiring »
David Kappel · Stefan Habenschuss · Robert Legenstein · Wolfgang Maass -
2009 Poster: Functional network reorganization in motor cortex can be explained by reward-modulated Hebbian learning »
Robert Legenstein · Steven Chase · Andrew B Schwartz · Wolfgang Maass -
2009 Oral: Functional Network Reorganization In Motor Cortex Can Be Explained by Reward-Modulated Hebbian Learning »
Robert Legenstein · Steven Chase · Andrew B Schwartz · Wolfgang Maass -
2009 Poster: STDP enables spiking neurons to detect hidden causes of their inputs »
Bernhard Nessler · Michael Pfeiffer · Wolfgang Maass -
2009 Spotlight: STDP enables spiking neurons to detect hidden causes of their inputs »
Bernhard Nessler · Michael Pfeiffer · Wolfgang Maass -
2009 Poster: Replacing supervised classification learning by Slow Feature Analysis in spiking neural networks »
Stefan Klampfl · Wolfgang Maass -
2009 Spotlight: Replacing supervised classification learning by Slow Feature Analysis in spiking neural networks »
Stefan Klampfl · Wolfgang Maass -
2008 Poster: On Computational Power and the Order-Chaos Phase Transition in Reservoir Computing »
Benjamin Schrauwen · Lars Buesing · Robert Legenstein -
2008 Oral: On Computational Power and the Order-Chaos Phase Transition in Reservoir Computing »
Benjamin Schrauwen · Lars Buesing · Robert Legenstein -
2008 Poster: Hebbian Learning of Bayes Optimal Decisions »
Bernhard Nessler · Michael Pfeiffer · Wolfgang Maass -
2007 Spotlight: Theoretical Analysis of Learning with Reward-Modulated Spike-Timing-Dependent Plasticity »
Robert Legenstein · Dejan Pecevski · Wolfgang Maass -
2007 Poster: Theoretical Analysis of Learning with Reward-Modulated Spike-Timing-Dependent Plasticity »
Robert Legenstein · Dejan Pecevski · Wolfgang Maass -
2007 Poster: Simplified Rules and Theoretical Analysis for Information Bottleneck Optimization and PCA with Spiking Neurons »
Lars Buesing · Wolfgang Maass -
2006 Workshop: Echo State Networks and Liquid State Machines »
Herbert Jaeger · Wolfgang Maass · Jose C Principe -
2006 Poster: Temporal dynamics of information content carried by neurons in the primary visual cortex »
Danko Nikolic · Stefan Haeusler · Wolf Singer · Wolfgang Maass -
2006 Poster: Information Bottleneck Optimization and Independent Component Extraction with Spiking Neurons »
Stefan Klampfl · Robert Legenstein · Wolfgang Maass