Timezone: »
We replace the output layer of deep neural nets, typically the softmax function, by a novel interpolating function. And we propose end-to-end training and testing algorithms for this new architecture. Compared to classical neural nets with softmax function as output activation, the surrogate with interpolating function as output activation combines advantages of both deep and manifold learning. The new framework demonstrates the following major advantages: First, it is better applicable to the case with insufficient training data. Second, it significantly improves the generalization accuracy on a wide variety of networks. The algorithm is implemented in PyTorch, and the code is available at https://github.com/ BaoWangMath/DNN-DataDependentActivation.
Author Information
Bao Wang (UCLA)
Xiyang Luo (Google)
Zhen Li (Hong Kong University of Science & Technology)
Wei Zhu (Duke University)
Zuoqiang Shi (zqshi@mail.tsinghua.edu.cn)
Stanley Osher (UCLA)
More from the Same Authors
-
2022 Poster: M2N: Mesh Movement Networks for PDE Solvers »
Wenbin Song · Mingrui Zhang · Joseph G Wallwork · Junpeng Gao · Zheng Tian · Fanglei Sun · Matthew Piggott · Junqing Chen · Zuoqiang Shi · Xiang Chen · Jun Wang -
2022 Poster: Finite-Time Analysis of Adaptive Temporal Difference Learning with Deep Neural Networks »
Tao Sun · Dongsheng Li · Bao Wang -
2022 Poster: Improving Neural Ordinary Differential Equations with Nesterov's Accelerated Gradient Method »
Ho Huu Nghia Nguyen · Tan Nguyen · Huyen Vo · Stanley Osher · Thieu Vo -
2022 Poster: FourierFormer: Transformer Meets Generalized Fourier Integral Theorem »
Tan Nguyen · Minh Pham · Tam Nguyen · Khai Nguyen · Stanley Osher · Nhat Ho -
2022 Poster: Improving Transformer with an Admixture of Attention Heads »
Tan Nguyen · Tam Nguyen · Hai Do · Khai Nguyen · Vishwanath Saragadam · Minh Pham · Khuong Duy Nguyen · Nhat Ho · Stanley Osher -
2021 : Performance-Guaranteed ODE Solvers with Complexity-Informed Neural Networks »
Feng Zhao · Xiang Chen · Jun Wang · Zuoqiang Shi · Shao-Lun Huang -
2021 : Stan Osher Talk »
Stanley Osher -
2021 Poster: FMMformer: Efficient and Flexible Transformer via Decomposed Near-field and Far-field Attention »
Tan Nguyen · Vai Suliafu · Stanley Osher · Long Chen · Bao Wang -
2021 Poster: Heavy Ball Neural Ordinary Differential Equations »
Hedi Xia · Vai Suliafu · Hangjie Ji · Tan Nguyen · Andrea Bertozzi · Stanley Osher · Bao Wang -
2020 Poster: MomentumRNN: Integrating Momentum into Recurrent Neural Networks »
Tan Nguyen · Richard Baraniuk · Andrea Bertozzi · Stanley Osher · Bao Wang -
2019 Poster: ResNets Ensemble via the Feynman-Kac Formalism to Improve Natural and Robust Accuracies »
Bao Wang · Zuoqiang Shi · Stanley Osher