`

Timezone: »

 
Poster
Are GANs Created Equal? A Large-Scale Study
Mario Lucic · Karol Kurach · Marcin Michalski · Sylvain Gelly · Olivier Bousquet

Tue Dec 04 07:45 AM -- 09:45 AM (PST) @ Room 210 #23

Generative adversarial networks (GAN) are a powerful subclass of generative models. Despite a very rich research activity leading to numerous interesting GAN algorithms, it is still very hard to assess which algorithm(s) perform better than others. We conduct a neutral, multi-faceted large-scale empirical study on state-of-the art models and evaluation measures. We find that most models can reach similar scores with enough hyperparameter optimization and random restarts. This suggests that improvements can arise from a higher computational budget and tuning more than fundamental algorithmic changes. To overcome some limitations of the current metrics, we also propose several data sets on which precision and recall can be computed. Our experimental results suggest that future GAN research should be based on more systematic and objective evaluation procedures. Finally, we did not find evidence that any of the tested algorithms consistently outperforms the non-saturating GAN introduced in \cite{goodfellow2014generative}.

Author Information

Mario Lucic (Google Brain)
Karol Kurach (Google Brain)
Marcin Michalski (Google)
Sylvain Gelly (Google Brain (Zurich))
Olivier Bousquet (Google Brain (Zurich))

More from the Same Authors

  • 2021 : A Unified Few-Shot Classification Benchmark to Compare Transfer and Meta Learning Approaches »
    Vincent Dumoulin · Neil Houlsby · Utku Evci · Xiaohua Zhai · Ross Goroshin · Sylvain Gelly · Hugo Larochelle
  • 2021 Poster: A Near-Optimal Algorithm for Debiasing Trained Machine Learning Models »
    Ibrahim Alabdulmohsin · Mario Lucic
  • 2021 Poster: MLP-Mixer: An all-MLP Architecture for Vision »
    Ilya Tolstikhin · Neil Houlsby · Alexander Kolesnikov · Lucas Beyer · Xiaohua Zhai · Tom Unterthiner · Jessica Yung · ANDREAS P Steiner · Daniel Keysers · Jakob Uszkoreit · Mario Lucic · Alexey Dosovitskiy
  • 2021 Poster: Revisiting the Calibration of Modern Neural Networks »
    Matthias Minderer · Josip Djolonga · Rob Romijnders · Frances Hubis · Xiaohua Zhai · Neil Houlsby · Dustin Tran · Mario Lucic
  • 2020 Memorial: In Memory of Olivier Chapelle »
    Bernhard Schölkopf · Andre Elisseeff · Olivier Bousquet · Vladimir Vapnik · Jason E Weston
  • 2020 Poster: Synthetic Data Generators -- Sequential and Private »
    Olivier Bousquet · Roi Livni · Shay Moran
  • 2020 Poster: What Do Neural Networks Learn When Trained With Random Labels? »
    Hartmut Maennel · Ibrahim Alabdulmohsin · Ilya Tolstikhin · Robert Baldock · Olivier Bousquet · Sylvain Gelly · Daniel Keysers
  • 2020 Spotlight: What Do Neural Networks Learn When Trained With Random Labels? »
    Hartmut Maennel · Ibrahim Alabdulmohsin · Ilya Tolstikhin · Robert Baldock · Olivier Bousquet · Sylvain Gelly · Daniel Keysers
  • 2020 Session: Orals & Spotlights Track 08: Deep Learning »
    Graham Taylor · Mario Lucic
  • 2019 : Poster Session »
    Matthia Sabatelli · Adam Stooke · Amir Abdi · Paulo Rauber · Leonard Adolphs · Ian Osband · Hardik Meisheri · Karol Kurach · Johannes Ackermann · Matt Benatan · GUO ZHANG · Chen Tessler · Dinghan Shen · Mikayel Samvelyan · Riashat Islam · Murtaza Dalal · Luke Harries · Andrey Kurenkov · Konrad Żołna · Sudeep Dasari · Kristian Hartikainen · Ofir Nachum · Kimin Lee · Markus Holzleitner · Vu Nguyen · Francis Song · Christopher Grimm · Leno Silva · Yuping Luo · Yifan Wu · Alex Lee · Thomas Paine · Wei-Yang Qu · Daniel Graves · Yannis Flet-Berliac · Yunhao Tang · Suraj Nair · Matthew Hausknecht · Akhil Bagaria · Simon Schmitt · Bowen Baker · Paavo Parmas · Benjamin Eysenbach · Lisa Lee · Siyu Lin · Daniel Seita · Abhishek Gupta · Riley Simmons-Edler · Yijie Guo · Kevin Corder · Vikash Kumar · Scott Fujimoto · Adam Lerer · Ignasi Clavera Gilaberte · Nick Rhinehart · Ashvin Nair · Ge Yang · Lingxiao Wang · Sungryull Sohn · JFernando Hernandez-Garcia · Xian Yeow Lee · Rupesh Srivastava · Khimya Khetarpal · Chenjun Xiao · Luckeciano Carvalho Melo · Rishabh Agarwal · Tianhe (Kevin) Yu · Glen Berseth · Devendra Singh Chaplot · Jie Tang · Anirudh Srinivasan · Tharun Medini · Aaron Havens · Misha Laskin · Asier Mujika · Rohan Saphal · Joe Marino · Alex Ray · Joshua Achiam · Ajay Mandlekar · Zhuang Liu · Danijar Hafner · Zhiwen Tang · Ted Xiao · Michael Walton · Jeff Druce · Ferran Alet · Zhang-Wei Hong · Stephanie Chan · Anusha Nagabandi · Hao Liu · Hao Sun · Ge Liu · Dinesh Jayaraman · JD Co-Reyes · Sophia Sanborn
  • 2019 : Poster Session »
    Greg Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alex Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alex Li · Kiran Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nick Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis
  • 2019 Poster: Adaptive Temporal-Difference Learning for Policy Evaluation with Per-State Uncertainty Estimates »
    Carlos Riquelme · Hugo Penedones · Damien Vincent · Hartmut Maennel · Sylvain Gelly · Timothy A Mann · Andre Barreto · Gergely Neu
  • 2019 Poster: Practical and Consistent Estimation of f-Divergences »
    Paul Rubenstein · Olivier Bousquet · Josip Djolonga · Carlos Riquelme · Ilya Tolstikhin
  • 2018 Poster: Deep Generative Models for Distribution-Preserving Lossy Compression »
    Michael Tschannen · Eirikur Agustsson · Mario Lucic
  • 2018 Poster: Assessing Generative Models via Precision and Recall »
    Mehdi S. M. Sajjadi · Olivier Bachem · Mario Lucic · Olivier Bousquet · Sylvain Gelly
  • 2017 Workshop: Optimal Transport and Machine Learning »
    Olivier Bousquet · Marco Cuturi · Gabriel Peyré · Fei Sha · Justin Solomon
  • 2017 Poster: Approximation and Convergence Properties of Generative Adversarial Learning »
    Shuang Liu · Olivier Bousquet · Kamalika Chaudhuri
  • 2017 Spotlight: Approximation and Convergence Properties of Generative Adversarial Learning »
    Shuang Liu · Olivier Bousquet · Kamalika Chaudhuri
  • 2017 Poster: AdaGAN: Boosting Generative Models »
    Ilya Tolstikhin · Sylvain Gelly · Olivier Bousquet · Carl-Johann SIMON-GABRIEL · Bernhard Schölkopf
  • 2007 Poster: The Tradeoffs of Large Scale Learning »
    Leon Bottou · Olivier Bousquet
  • 2006 Demonstration: MoGo: exploration-exploitation in Monte-Carlo Go using UCT and patterns »
    Olivier Teytaud · Sylvain Gelly