Timezone: »
We present a learning-based approach to computing solutions for certain NP-hard problems. Our approach combines deep learning techniques with useful algorithmic elements from classic heuristics. The central component is a graph convolutional network that is trained to estimate the likelihood, for each vertex in a graph, of whether this vertex is part of the optimal solution. The network is designed and trained to synthesize a diverse set of solutions, which enables rapid exploration of the solution space via tree search. The presented approach is evaluated on four canonical NP-hard problems and five datasets, which include benchmark satisfiability problems and real social network graphs with up to a hundred thousand nodes. Experimental results demonstrate that the presented approach substantially outperforms recent deep learning work, and performs on par with highly optimized state-of-the-art heuristic solvers for some NP-hard problems. Experiments indicate that our approach generalizes across datasets, and scales to graphs that are orders of magnitude larger than those used during training.
Author Information
Zhuwen Li (Intel Labs)
Qifeng Chen (HKUST)
Vladlen Koltun (Intel Labs)
More from the Same Authors
-
2021 Spotlight: Habitat 2.0: Training Home Assistants to Rearrange their Habitat »
Andrew Szot · Alexander Clegg · Eric Undersander · Erik Wijmans · Yili Zhao · John Turner · Noah Maestre · Mustafa Mukadam · Devendra Singh Chaplot · Oleksandr Maksymets · Aaron Gokaslan · Vladimír Vondruš · Sameer Dharur · Franziska Meier · Wojciech Galuba · Angel Chang · Zsolt Kira · Vladlen Koltun · Jitendra Malik · Manolis Savva · Dhruv Batra -
2022 Poster: Scale-invariant Learning by Physics Inversion »
Philipp Holl · Vladlen Koltun · Nils Thuerey -
2022 Poster: Domain Generalization without Excess Empirical Risk »
Ozan Sener · Vladlen Koltun -
2022 Poster: Guaranteed Conservation of Momentum for Learning Particle-based Fluid Dynamics »
Lukas Prantl · Benjamin Ummenhofer · Vladlen Koltun · Nils Thuerey -
2022 Poster: Non-deep Networks »
Ankit Goyal · Alexey Bochkovskiy · Jia Deng · Vladlen Koltun -
2021 : Habitat 2.0: Training Home Assistants to Rearrange their Habitat »
Andrew Szot · Alexander Clegg · Eric Undersander · Erik Wijmans · Yili Zhao · Noah Maestre · Mustafa Mukadam · Oleksandr Maksymets · Aaron Gokaslan · Sameer Dharur · Franziska Meier · Wojciech Galuba · Angel Chang · Zsolt Kira · Vladlen Koltun · Jitendra Malik · Manolis Savva · Dhruv Batra -
2021 : Habitat 2.0: Training Home Assistants to Rearrange their Habitat »
Andrew Szot · Alexander Clegg · Eric Undersander · Erik Wijmans · Yili Zhao · Noah Maestre · Mustafa Mukadam · Oleksandr Maksymets · Aaron Gokaslan · Sameer Dharur · Franziska Meier · Wojciech Galuba · Angel Chang · Zsolt Kira · Vladlen Koltun · Jitendra Malik · Manolis Savva · Dhruv Batra -
2021 Poster: Geometry Processing with Neural Fields »
Guandao Yang · Serge Belongie · Bharath Hariharan · Vladlen Koltun -
2021 Poster: Habitat 2.0: Training Home Assistants to Rearrange their Habitat »
Andrew Szot · Alexander Clegg · Eric Undersander · Erik Wijmans · Yili Zhao · John Turner · Noah Maestre · Mustafa Mukadam · Devendra Singh Chaplot · Oleksandr Maksymets · Aaron Gokaslan · Vladimír Vondruš · Sameer Dharur · Franziska Meier · Wojciech Galuba · Angel Chang · Zsolt Kira · Vladlen Koltun · Jitendra Malik · Manolis Savva · Dhruv Batra -
2021 Poster: Low-Rank Subspaces in GANs »
Jiapeng Zhu · Ruili Feng · Yujun Shen · Deli Zhao · Zheng-Jun Zha · Jingren Zhou · Qifeng Chen -
2021 Poster: Differentiable Simulation of Soft Multi-body Systems »
Yi-Ling Qiao · Junbang Liang · Vladlen Koltun · Ming Lin -
2020 Poster: Blind Video Temporal Consistency via Deep Video Prior »
Chenyang Lei · Yazhou Xing · Qifeng Chen -
2018 Poster: Multi-Task Learning as Multi-Objective Optimization »
Ozan Sener · Vladlen Koltun