Timezone: »
Holistic 3D indoor scene understanding refers to jointly recovering the i) object bounding boxes, ii) room layout, and iii) camera pose, all in 3D. The existing methods either are ineffective or only tackle the problem partially. In this paper, we propose an end-to-end model that simultaneously solves all three tasks in real-time given only a single RGB image. The essence of the proposed method is to improve the prediction by i) parametrizing the targets (e.g., 3D boxes) instead of directly estimating the targets, and ii) cooperative training across different modules in contrast to training these modules individually. Specifically, we parametrize the 3D object bounding boxes by the predictions from several modules, i.e., 3D camera pose and object attributes. The proposed method provides two major advantages: i) The parametrization helps maintain the consistency between the 2D image and the 3D world, thus largely reducing the prediction variances in 3D coordinates. ii) Constraints can be imposed on the parametrization to train different modules simultaneously. We call these constraints "cooperative losses" as they enable the joint training and inference. We employ three cooperative losses for 3D bounding boxes, 2D projections, and physical constraints to estimate a geometrically consistent and physically plausible 3D scene. Experiments on the SUN RGB-D dataset shows that the proposed method significantly outperforms prior approaches on 3D layout estimation, 3D object detection, 3D camera pose estimation, and holistic scene understanding.
Author Information
Siyuan Huang (University of California, Los Angeles)
Siyuan Qi (UCLA)
Yinxue Xiao (University of California, Los Angeles)
Yixin Zhu (University of California, Los Angeles)
Ying Nian Wu (University of California, Los Angeles)
Song-Chun Zhu (UCLA)
More from the Same Authors
-
2020 : Paper 2: Energy-Based Continuous Inverse Optimal Control »
Yifei Xu · Jianwen Xie · Chris Baker · Yibiao Zhao · Ying Nian Wu -
2021 : Theorem-Aware Geometry Problem Solving with Symbolic Reasoning and Theorem Prediction »
Pan Lu · Ran Gong · Shibiao Jiang · Liang Qiu · Siyuan Huang · Xiaodan Liang · Song-Chun Zhu · Ran Gong -
2021 : Towards Diagram Understanding and Cognitive Reasoning in Icon Question Answering »
Pan Lu · Liang Qiu · Jiaqi Chen · Tanglin Xia · Yizhou Zhao · Wei Zhang · Zhou Yu · Xiaodan Liang · Song-Chun Zhu -
2021 : Deep Generative model with Hierarchical Latent Factors for Timeseries Anomaly Detection »
Cristian Challu · Peihong Jiang · Ying Nian Wu · Laurent Callot -
2021 : Unsupervised Meta-Learning via Latent Space Energy-based Model of Symbol Vector Coupling »
Bo Pang · Deqian Kong · Ying Nian Wu -
2021 : Deep Generative model with Hierarchical Latent Factors for Timeseries Anomaly Detection »
Cristian Challu · Peihong Jiang · Ying Nian Wu · Laurent Callot -
2021 Poster: On Path Integration of Grid Cells: Group Representation and Isotropic Scaling »
Ruiqi Gao · Jianwen Xie · Xue-Xin Wei · Song-Chun Zhu · Ying Nian Wu -
2021 Poster: Iterative Teacher-Aware Learning »
Luyao Yuan · Dongruo Zhou · Junhong Shen · Jingdong Gao · Jeffrey L Chen · Quanquan Gu · Ying Nian Wu · Song-Chun Zhu -
2021 Poster: Unsupervised Foreground Extraction via Deep Region Competition »
Peiyu Yu · Sirui Xie · Xiaojian Ma · Yixin Zhu · Ying Nian Wu · Song-Chun Zhu -
2020 Poster: Learning Latent Space Energy-Based Prior Model »
Bo Pang · Tian Han · Erik Nijkamp · Song-Chun Zhu · Ying Nian Wu -
2019 : Extended Poster Session »
Travis LaCroix · Marie Ossenkopf · Mina Lee · Nicole Fitzgerald · Daniela Mihai · Jonathon Hare · Ali Zaidi · Alexander Cowen-Rivers · Alana Marzoev · Eugene Kharitonov · Luyao Yuan · Tomasz Korbak · Paul Pu Liang · Yi Ren · Roberto Dessì · Peter Potash · Shangmin Guo · Tatsunori Hashimoto · Percy Liang · Julian Zubek · Zipeng Fu · Song-Chun Zhu · Adam Lerer -
2019 Poster: Learning Perceptual Inference by Contrasting »
Chi Zhang · Baoxiong Jia · Feng Gao · Yixin Zhu · HongJing Lu · Song-Chun Zhu -
2019 Spotlight: Learning Perceptual Inference by Contrasting »
Chi Zhang · Baoxiong Jia · Feng Gao · Yixin Zhu · HongJing Lu · Song-Chun Zhu -
2019 Poster: PerspectiveNet: 3D Object Detection from a Single RGB Image via Perspective Points »
Siyuan Huang · Yixin Chen · Tao Yuan · Siyuan Qi · Yixin Zhu · Song-Chun Zhu -
2019 Poster: Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model »
Erik Nijkamp · Mitch Hill · Song-Chun Zhu · Ying Nian Wu -
2013 Poster: Unsupervised Structure Learning of Stochastic And-Or Grammars »
Kewei Tu · Maria Pavlovskaia · Song-Chun Zhu -
2011 Poster: Image Parsing with Stochastic Scene Grammar »
Yibiao Zhao · Song-Chun Zhu