Timezone: »
Convolutional neural networks (CNNs) have recently achieved great success in single-image super-resolution (SISR). However, these methods tend to produce over-smoothed outputs and miss some textural details. To solve these problems, we propose the Super-Resolution CliqueNet (SRCliqueNet) to reconstruct the high resolution (HR) image with better textural details in the wavelet domain. The proposed SRCliqueNet firstly extracts a set of feature maps from the low resolution (LR) image by the clique blocks group. Then we send the set of feature maps to the clique up-sampling module to reconstruct the HR image. The clique up-sampling module consists of four sub-nets which predict the high resolution wavelet coefficients of four sub-bands. Since we consider the edge feature properties of four sub-bands, the four sub-nets are connected to the others so that they can learn the coefficients of four sub-bands jointly. Finally we apply inverse discrete wavelet transform (IDWT) to the output of four sub-nets at the end of the clique up-sampling module to increase the resolution and reconstruct the HR image. Extensive quantitative and qualitative experiments on benchmark datasets show that our method achieves superior performance over the state-of-the-art methods.
Author Information
Zhisheng Zhong (Peking University)
Tiancheng Shen (Peking University)
Yibo Yang (Peking University)
Zhouchen Lin (Peking University)
Chao Zhang (Peking University)
More from the Same Authors
-
2021 Spotlight: Training Feedback Spiking Neural Networks by Implicit Differentiation on the Equilibrium State »
Mingqing Xiao · Qingyan Meng · Zongpeng Zhang · Yisen Wang · Zhouchen Lin -
2021 Poster: On Training Implicit Models »
Zhengyang Geng · Xin-Yu Zhang · Shaojie Bai · Yisen Wang · Zhouchen Lin -
2021 Poster: Dissecting the Diffusion Process in Linear Graph Convolutional Networks »
Yifei Wang · Yisen Wang · Jiansheng Yang · Zhouchen Lin -
2021 Poster: HRFormer: High-Resolution Vision Transformer for Dense Predict »
YUHUI YUAN · Rao Fu · Lang Huang · Weihong Lin · Chao Zhang · Xilin Chen · Jingdong Wang -
2021 Poster: Gauge Equivariant Transformer »
Lingshen He · Yiming Dong · Yisen Wang · Dacheng Tao · Zhouchen Lin -
2021 Poster: Training Feedback Spiking Neural Networks by Implicit Differentiation on the Equilibrium State »
Mingqing Xiao · Qingyan Meng · Zongpeng Zhang · Yisen Wang · Zhouchen Lin -
2021 Poster: Efficient Equivariant Network »
Lingshen He · Yuxuan Chen · zhengyang shen · Yiming Dong · Yisen Wang · Zhouchen Lin -
2021 Poster: Residual Relaxation for Multi-view Representation Learning »
Yifei Wang · Zhengyang Geng · Feng Jiang · Chuming Li · Yisen Wang · Jiansheng Yang · Zhouchen Lin -
2020 Poster: Self-Adaptive Training: beyond Empirical Risk Minimization »
Lang Huang · Chao Zhang · Hongyang Zhang -
2020 Poster: ISTA-NAS: Efficient and Consistent Neural Architecture Search by Sparse Coding »
Yibo Yang · Hongyang Li · Shan You · Fei Wang · Chen Qian · Zhouchen Lin -
2018 Workshop: NIPS 2018 workshop on Compact Deep Neural Networks with industrial applications »
Lixin Fan · Zhouchen Lin · Max Welling · Yurong Chen · Werner Bailer -
2018 Poster: SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path-Integrated Differential Estimator »
Cong Fang · Chris Junchi Li · Zhouchen Lin · Tong Zhang -
2018 Spotlight: SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path-Integrated Differential Estimator »
Cong Fang · Chris Junchi Li · Zhouchen Lin · Tong Zhang -
2018 Poster: Greedy Hash: Towards Fast Optimization for Accurate Hash Coding in CNN »
Shupeng Su · Chao Zhang · Kai Han · Yonghong Tian -
2017 Poster: Faster and Non-ergodic O(1/K) Stochastic Alternating Direction Method of Multipliers »
Cong Fang · Feng Cheng · Zhouchen Lin -
2015 Poster: Accelerated Proximal Gradient Methods for Nonconvex Programming »
Huan Li · Zhouchen Lin