Timezone: »
Progress in deep learning has spawned great successes in many engineering applications. As a prime example, convolutional neural networks, a type of feedforward neural networks, are now approaching -- and sometimes even surpassing -- human accuracy on a variety of visual recognition tasks. Here, however, we show that these neural networks and their recent extensions struggle in recognition tasks where co-dependent visual features must be detected over long spatial ranges. We introduce a visual challenge, Pathfinder, and describe a novel recurrent neural network architecture called the horizontal gated recurrent unit (hGRU) to learn intrinsic horizontal connections -- both within and across feature columns. We demonstrate that a single hGRU layer matches or outperforms all tested feedforward hierarchical baselines including state-of-the-art architectures with orders of magnitude more parameters.
Author Information
Drew Linsley (Brown University)
We need artificial vision to create intelligent machines that can reason about the world, but existing artificial vision systems cannot solve many of the visual challenges that we encounter and routinely solve in our daily lives. I look to biological vision to inspire new solutions to challenges faced by artificial vision. I do this by testing complementary hypotheses that connect computational theory with systems- and cognitive-neuroscience level experimental research: - Computational challenges for artificial vision can be identified through systematic comparisons with biological vision, and solved with algorithms inspired by those of biological vision. - Improved algorithms for artificial vision will lead to better methods for gleaning insight from large-scale experimental data, and better models for understanding the relationship between neural computation and perception.
Junkyung Kim (Brown University)
Vijay Veerabadran (University of California, San Diego)
Ph.D. student at UC San Diego - Working on neurally plausible computer vision models and deep learning for medical applications.
Charles Windolf (Brown University)
Thomas Serre (Brown University)
More from the Same Authors
-
2022 : The emergence of visual simulation in task-optimized recurrent neural networks »
Alekh Karkada Ashok · Lakshmi Narasimhan Govindarajan · Drew Linsley · David Sheinberg · Thomas Serre -
2023 Poster: Break It Down: Evidence for Structural Compositionality in Neural Networks »
Michael Lepori · Thomas Serre · Ellie Pavlick -
2023 Poster: Performance-optimized deep neural networks are evolving into worse models of inferotemporal visual cortex »
Drew Linsley · Ivan F Rodriguez Rodriguez · Thomas FEL · Michael Arcaro · Saloni Sharma · Margaret Livingstone · Thomas Serre -
2023 Poster: A Holistic Approach to Unifying Automatic Concept Extraction and Concept Importance Estimation »
Thomas FEL · Victor Boutin · Louis Béthune · Remi Cadene · Mazda Moayeri · Léo Andéol · Mathieu Chalvidal · Thomas Serre -
2023 Poster: Unlocking Feature Visualization for Deep Network with MAgnitude Constrained Optimization »
Thomas FEL · Thibaut Boissin · Victor Boutin · Agustin PICARD · Paul Novello · Julien Colin · Drew Linsley · Tom ROUSSEAU · Remi Cadene · Laurent Gardes · Thomas Serre -
2023 Poster: Learning Functional Transduction »
Mathieu Chalvidal · Thomas Serre · Rufin VanRullen -
2023 Poster: Computing a human-like reaction time metric from stable recurrent vision models »
Lore Goetschalckx · Lakshmi Narasimhan Govindarajan · Alekh Karkada Ashok · Thomas Serre -
2022 Poster: Meta-Reinforcement Learning with Self-Modifying Networks »
Mathieu Chalvidal · Thomas Serre · Rufin VanRullen -
2022 Poster: A Benchmark for Compositional Visual Reasoning »
Aimen Zerroug · Mohit Vaishnav · Julien Colin · Sebastian Musslick · Thomas Serre -
2022 Poster: Diversity vs. Recognizability: Human-like generalization in one-shot generative models »
Victor Boutin · Lakshya Singhal · Xavier Thomas · Thomas Serre -
2022 Poster: Harmonizing the object recognition strategies of deep neural networks with humans »
Thomas FEL · Ivan F Rodriguez Rodriguez · Drew Linsley · Thomas Serre -
2022 Poster: What I Cannot Predict, I Do Not Understand: A Human-Centered Evaluation Framework for Explainability Methods »
Julien Colin · Thomas FEL · Remi Cadene · Thomas Serre -
2021 Poster: Tracking Without Re-recognition in Humans and Machines »
Drew Linsley · Girik Malik · Junkyung Kim · Lakshmi Narasimhan Govindarajan · Ennio Mingolla · Thomas Serre -
2021 Poster: Look at the Variance! Efficient Black-box Explanations with Sobol-based Sensitivity Analysis »
Thomas FEL · Remi Cadene · Mathieu Chalvidal · Matthieu Cord · David Vigouroux · Thomas Serre -
2020 Poster: Stable and expressive recurrent vision models »
Drew Linsley · Alekh Karkada Ashok · Lakshmi Narasimhan Govindarajan · Rex Liu · Thomas Serre -
2020 Spotlight: Stable and expressive recurrent vision models »
Drew Linsley · Alekh Karkada Ashok · Lakshmi Narasimhan Govindarajan · Rex Liu · Thomas Serre -
2020 Session: Orals & Spotlights Track 29: Neuroscience »
Aasa Feragen · Thomas Serre -
2016 Poster: How Deep is the Feature Analysis underlying Rapid Visual Categorization? »
Sven Eberhardt · Jonah G Cader · Thomas Serre -
2013 Poster: Neural representation of action sequences: how far can a simple snippet-matching model take us? »
Cheston Tan · Jedediah M Singer · Thomas Serre · David Sheinberg · Tomaso Poggio