Timezone: »
Poster
Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with $\beta$-Divergences
Jeremias Knoblauch · Jack E Jewson · Theodoros Damoulas
We present the very first robust Bayesian Online Changepoint Detection algorithm through General Bayesian Inference (GBI) with $\beta$-divergences. The resulting inference procedure is doubly robust for both the predictive and the changepoint (CP) posterior, with linear time and constant space complexity. We provide a construction for exponential models and demonstrate it on the Bayesian Linear Regression model. In so doing, we make two additional contributions: Firstly, we make GBI scalable using Structural Variational approximations that are exact as $\beta \to 0$. Secondly, we give a principled way of choosing the divergence parameter $\beta$ by minimizing expected predictive loss on-line. Reducing False Discovery Rates of \CPs from up to 99\% to 0\% on real world data, this offers the state of the art.
Author Information
Jeremias Knoblauch (Warwick University)
Jack E Jewson (University of Warwick)
Theodoros Damoulas (University of Warwick The Alan Turing Institute)
More from the Same Authors
-
2020 : Scalable Multitask Latent Force Models with Applications to Predicting Lithium-ion Concentration »
Daniel Tait · Ferran Brosa Planella · Widanalage Dhammika Widanage · Theodoros Damoulas -
2021 : Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap »
Harita Dellaporta · Jeremias Knoblauch · Theodoros Damoulas · Francois-Xavier Briol -
2021 : Robust Generalised Bayesian Inference for Intractable Likelihoods »
Takuo Matsubara · Jeremias Knoblauch · Francois-Xavier Briol · Chris Oates -
2021 Poster: Dynamic Causal Bayesian Optimization »
Virginia Aglietti · Neil Dhir · Javier González · Theodoros Damoulas -
2021 Poster: Higher Order Kernel Mean Embeddings to Capture Filtrations of Stochastic Processes »
Cristopher Salvi · Maud Lemercier · Chong Liu · Blanka Horvath · Theodoros Damoulas · Terry Lyons -
2021 Poster: Spatio-Temporal Variational Gaussian Processes »
Oliver Hamelijnck · William Wilkinson · Niki Loppi · Arno Solin · Theodoros Damoulas -
2020 Poster: Generalised Bayesian Filtering via Sequential Monte Carlo »
Ayman Boustati · Omer Deniz Akyildiz · Theodoros Damoulas · Adam Johansen -
2020 Poster: Multi-task Causal Learning with Gaussian Processes »
Virginia Aglietti · Theodoros Damoulas · Mauricio Álvarez · Javier González -
2019 Poster: Structured Variational Inference in Continuous Cox Process Models »
Virginia Aglietti · Edwin Bonilla · Theodoros Damoulas · Sally Cripps -
2019 Poster: Multi-resolution Multi-task Gaussian Processes »
Oliver Hamelijnck · Theodoros Damoulas · Kangrui Wang · Mark Girolami -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2012 Workshop: Human Computation for Science and Computational Sustainability »
Theodoros Damoulas · Thomas Dietterich · Edith Law · Serge Belongie