Timezone: »
Title: On safe and efficient human-robot vehicle interactions via CVAE-based intent modeling and reachability-based safety assurance
Abstract: In this talk I will present a decision-making and control stack for human-robot vehicle interactions. I will first discuss a data-driven approach for learning interaction dynamics between robot-driven and human-driven vehicles, based on recent advances in the theory of conditional variational autoencoders (CVAEs). I will then discuss how to incorporate such a learned interaction model into a real-time, intent-aware decision-making framework, with an emphasis on minimally-interventional strategies rooted in backward reachability analysis for ensuring safety even when other cars defy the robot's predictions. Experiments on a full-scale steer-by-wire platform entailing traffic weaving maneuvers demonstrate how the proposed autonomy stack enables more efficient and anticipative autonomous driving behaviors, while avoiding collisions even when the other cars defy the robot’s predictions and take dangerous actions.
Author Information
Marco Pavone (Stanford University)
More from the Same Authors
-
2022 : Foundation Models for Semantic Novelty in Reinforcement Learning »
Tarun Gupta · Peter Karkus · Tong Che · Danfei Xu · Marco Pavone -
2022 : DiffStack: A Differentiable and Modular Control Stack for Autonomous Vehicles »
Peter Karkus · Boris Ivanovic · Shie Mannor · Marco Pavone -
2022 : Robust Trajectory Prediction against Adversarial Attacks »
Yulong Cao · Danfei Xu · Xinshuo Weng · Zhuoqing Morley Mao · Anima Anandkumar · Chaowei Xiao · Marco Pavone -
2022 : AdvDO: Realistic Adversarial Attacks for Trajectory Prediction »
Yulong Cao · Chaowei Xiao · Anima Anandkumar · Danfei Xu · Marco Pavone -
2022 : Conformal Semantic Keypoint Detection with Statistical Guarantees »
Heng Yang · Marco Pavone -
2022 : Expanding the Deployment Envelope of Behavior Prediction via Adaptive Meta-Learning »
Boris Ivanovic · James Harrison · Marco Pavone -
2022 : Conformal Semantic Keypoint Detection with Statistical Guarantees »
Heng Yang · Marco Pavone -
2023 Poster: PAC-Bayes Generalization Certificates for Learned Inductive Conformal Prediction »
Apoorva Sharma · Sushant Veer · Asher Hancock · Heng Yang · Marco Pavone · Anirudha Majumdar -
2023 Poster: trajdata: A Unified Interface to Multiple Human Trajectory Datasets »
Boris Ivanovic · Guanyu Song · Igor Gilitschenski · Marco Pavone -
2022 : Invited Talk: Marco Pavone »
Marco Pavone -
2021 Poster: Data Sharing and Compression for Cooperative Networked Control »
Jiangnan Cheng · Marco Pavone · Sachin Katti · Sandeep Chinchali · Ao Tang -
2020 Poster: Continuous Meta-Learning without Tasks »
James Harrison · Apoorva Sharma · Chelsea Finn · Marco Pavone -
2020 Poster: Evidential Sparsification of Multimodal Latent Spaces in Conditional Variational Autoencoders »
Masha Itkina · Boris Ivanovic · Ransalu Senanayake · Mykel J Kochenderfer · Marco Pavone -
2019 : Marco Pavone: On Safe and Efficient Human-robot Interactions via Multi-modal Intent Modeling and Reachability-based Safety Assurance »
Marco Pavone -
2019 Poster: High-Dimensional Optimization in Adaptive Random Subspaces »
Jonathan Lacotte · Mert Pilanci · Marco Pavone -
2018 : Panel »
Yimeng Zhang · Alfredo Canziani · Marco Pavone · Dorsa Sadigh · Kurt Keutzer -
2015 Poster: Risk-Sensitive and Robust Decision-Making: a CVaR Optimization Approach »
Yinlam Chow · Aviv Tamar · Shie Mannor · Marco Pavone