Timezone: »
Continual learning (CL) is the ability of a model to learn continually from a stream of data, building on what was learnt previously, hence exhibiting positive transfer, as well as being able to remember previously seen tasks. CL is a fundamental step towards artificial intelligence, as it allows the agent to adapt to a continuously changing environment, a hallmark of natural intelligence. It also has implications for supervised or unsupervised learning. For example, when the dataset is not properly shuffled or there exists a drift in the input distribution, the model overfits the recently seen data, forgetting the rest -- phenomena referred to as catastrophic forgetting, which is part of CL and is something CL systems aim to address.
Continual learning is defined in practice through a series of desiderata. A non-complete lists includes:
* Online learning -- learning occurs at every moment, with no fixed tasks or data sets and no clear boundaries between tasks;
* Presence of transfer (forward/backward) -- the model should be able to transfer from previously seen data or tasks to new ones, as well as possibly new task should help improve performance on older ones;
* Resistance to catastrophic forgetting -- new learning does not destroy performance on previously seen data;
* Bounded system size -- the model capacity should be fixed, forcing the system use its capacity intelligently as well as gracefully forgetting information such to ensure maximising future reward;
* No direct access to previous experience -- while the model can remember a limited amount of experience, a continual learning algorithm should not have direct access to past tasks or be able to rewind the environment;
In the previous edition of the workshop the focus has been on defining a complete list of desiderata, of what a continual learning (CL) enabled system should be able to do. We believe that in this edition we should further constrain the discussion with a focus on how to evaluate CL and how it relates to other existing topics (e.g. life-long learning, transfer learning, meta-learning) and how ideas from these topics could be useful for continual learning.
Different aspects of continual learning are in opposition of each other (e.g. fixed model capacity and not-forgetting), which also raises the question of how to evaluate continual learning systems. One one hand, what are the right trade-offs between these different opposing forces? How do we compare existing algorithms given these different dimensions along which we should evaluate them (e.g. forgetting, positive transfer)? What are the right metrics we should report? On the other hand, optimal or meaningful trade-offs will be tightly defined by the data or at least type of tasks we use to test the algorithms. One prevalent task used by many recent papers is PermutedMNIST. But as MNIST is not a reliable dataset for classification, so PermutedMNIST might be extremely misleading for continual learning. What would be the right benchmarks, datasets or tasks for fruitfully exploiting this topic?
Finally, we will also encourage presentation of both novel approaches to CL and implemented systems, which will help concretize the discussion of what CL is and how to evaluate CL systems.
Fri 5:30 a.m. - 6:15 a.m.
|
Introduction of the workshop
(
Talk
)
Introduction of the Continual Learning workshop from the organizers, expressing their opinion of the goal of the workshop. |
Razvan Pascanu · Yee Teh · Mark Ring · Marc Pickett 🔗 |
Fri 6:15 a.m. - 6:30 a.m.
|
Spotlight #1
(
Spotlight
)
TBD |
🔗 |
Fri 6:30 a.m. - 6:45 a.m.
|
Spotlight #2
(
Spotlight
)
TBD |
🔗 |
Fri 6:45 a.m. - 7:00 a.m.
|
Spotlight #3
(
Spotlight
)
TBD |
🔗 |
Fri 7:00 a.m. - 7:30 a.m.
|
Invited Speaker #1 Chelsea Finn
(
Talk
)
|
Chelsea Finn 🔗 |
Fri 8:00 a.m. - 8:30 a.m.
|
Invited Speaker #2 Raia Hadsell
(
Talk
)
|
Raia Hadsell 🔗 |
Fri 8:30 a.m. - 9:00 a.m.
|
Invited Speaker #3 Marc'Aurelio Ranzato
(
Talk
)
|
Marc'Aurelio Ranzato 🔗 |
Fri 9:00 a.m. - 11:00 a.m.
|
Lunch & Posters
(
Break & Posters
)
|
Haytham Fayek · German Parisi · Brian Xu · Pramod Kaushik Mudrakarta · Sophie Cerf · Sarah Wassermann · Davit Soselia · Rahaf Aljundi · Mohamed Elhoseiny · Frantzeska Lavda · Kevin J Liang · Arslan Chaudhry · Sanmit Narvekar · Vincenzo Lomonaco · Wesley Chung · Michael Chang · Ying Zhao · Zsolt Kira · Pouya Bashivan · Banafsheh Rafiee · Oleksiy Ostapenko · Andrew Jones · Christos Kaplanis · Sinan Kalkan · Dan Teng · Xu He · Vincent Liu · Somjit Nath · Sungsoo Ahn · Ting Chen · Shenyang Huang · Yash Chandak · Nathan Sprague · Martin Schrimpf · Tony Kendall · Jonathan Richard Schwarz · Michael Li · Yunshu Du · Yen-Chang Hsu · Samira Abnar · Bo Wang
|
Fri 11:00 a.m. - 11:30 a.m.
|
Invited Speaker #4 Juergen Schmidhuber
(
Talk
)
|
Jürgen Schmidhuber 🔗 |
Fri 11:30 a.m. - 12:00 p.m.
|
Invited Speaker #5 Yarin Gal
(
Talk
)
|
Yarin Gal 🔗 |
Fri 12:00 p.m. - 12:30 p.m.
|
Coffee Break & Posters
(
Break & Posters
)
|
🔗 |
Fri 12:30 p.m. - 12:45 p.m.
|
Spotlight #4
(
Spotlight
)
TBD |
🔗 |
Fri 12:45 p.m. - 1:00 p.m.
|
Spotlight #5
(
Spotlight
)
|
🔗 |
Fri 1:00 p.m. - 1:15 p.m.
|
Spotlight #6
(
Spotlight
)
TBD |
🔗 |
Fri 1:15 p.m. - 1:30 p.m.
|
Overview of Darpa's Lifelong learning program (Hava Siegelmann)
(
Spotlight
)
|
Hava Siegelmann 🔗 |
Fri 1:30 p.m. - 2:00 p.m.
|
Invited Speaker #6 Martha White
(
Talk
)
|
Martha White 🔗 |
Fri 2:00 p.m. - 3:30 p.m.
|
Panel Discussion
|
🔗 |
Author Information
Razvan Pascanu (Google DeepMind)
Yee Teh (DeepMind)
Marc Pickett (Google Research)
Mark Ring (CogitAI)
More from the Same Authors
-
2021 : LiRo: Benchmark and leaderboard for Romanian language tasks »
Stefan Dumitrescu · Petru Rebeja · Beata Lorincz · Mihaela Gaman · Andrei Avram · Mihai Ilie · Andrei Pruteanu · Adriana Stan · Lorena Rosia · Cristina Iacobescu · Luciana Morogan · George Dima · Gabriel Marchidan · Traian Rebedea · Madalina Chitez · Dani Yogatama · Sebastian Ruder · Radu Tudor Ionescu · Razvan Pascanu · Viorica Patraucean -
2021 : Uncertainty Quantification in End-to-End Implicit Neural Representations for Medical Imaging »
Francisca Vasconcelos · Bobby He · Yee Teh -
2022 : Pre-training via Denoising for Molecular Property Prediction »
Sheheryar Zaidi · Michael Schaarschmidt · James Martens · Hyunjik Kim · Yee Whye Teh · Alvaro Sanchez Gonzalez · Peter Battaglia · Razvan Pascanu · Jonathan Godwin -
2022 : When Does Re-initialization Work? »
Sheheryar Zaidi · Tudor Berariu · Hyunjik Kim · Jorg Bornschein · Claudia Clopath · Yee Whye Teh · Razvan Pascanu -
2022 Poster: Disentangling Transfer in Continual Reinforcement Learning »
Maciej Wolczyk · Michał Zając · Razvan Pascanu · Łukasz Kuciński · Piotr Miłoś -
2021 Poster: On Contrastive Representations of Stochastic Processes »
Emile Mathieu · Adam Foster · Yee Teh -
2021 Poster: Group Equivariant Subsampling »
Jin Xu · Hyunjik Kim · Thomas Rainforth · Yee Teh -
2021 Poster: Powerpropagation: A sparsity inducing weight reparameterisation »
Jonathan Richard Schwarz · Siddhant Jayakumar · Razvan Pascanu · Peter E Latham · Yee Teh -
2021 Poster: Continual World: A Robotic Benchmark For Continual Reinforcement Learning »
Maciej Wołczyk · Michał Zając · Razvan Pascanu · Łukasz Kuciński · Piotr Miłoś -
2021 Poster: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations »
Tim G. J. Rudner · Cong Lu · Michael A Osborne · Yarin Gal · Yee Teh -
2021 Poster: On the Role of Optimization in Double Descent: A Least Squares Study »
Ilja Kuzborskij · Csaba Szepesvari · Omar Rivasplata · Amal Rannen-Triki · Razvan Pascanu -
2021 Poster: Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels »
Michael Hutchinson · Alexander Terenin · Viacheslav Borovitskiy · So Takao · Yee Teh · Marc Deisenroth -
2021 Poster: BayesIMP: Uncertainty Quantification for Causal Data Fusion »
Siu Lun Chau · Jean-Francois Ton · Javier González · Yee Teh · Dino Sejdinovic -
2021 Poster: Neural Ensemble Search for Uncertainty Estimation and Dataset Shift »
Sheheryar Zaidi · Arber Zela · Thomas Elsken · Chris C Holmes · Frank Hutter · Yee Teh -
2020 Poster: Top-KAST: Top-K Always Sparse Training »
Siddhant Jayakumar · Razvan Pascanu · Jack Rae · Simon Osindero · Erich Elsen -
2020 Poster: Pointer Graph Networks »
Petar Veličković · Lars Buesing · Matthew Overlan · Razvan Pascanu · Oriol Vinyals · Charles Blundell -
2020 Spotlight: Pointer Graph Networks »
Petar Veličković · Lars Buesing · Matthew Overlan · Razvan Pascanu · Oriol Vinyals · Charles Blundell -
2020 Poster: Understanding the Role of Training Regimes in Continual Learning »
Seyed Iman Mirzadeh · Mehrdad Farajtabar · Razvan Pascanu · Hassan Ghasemzadeh -
2019 Poster: Continual Unsupervised Representation Learning »
Dushyant Rao · Francesco Visin · Andrei A Rusu · Razvan Pascanu · Yee Whye Teh · Raia Hadsell -
2018 : Introduction of the workshop »
Razvan Pascanu · Yee Teh · Mark Ring · Marc Pickett -
2018 Poster: Relational recurrent neural networks »
Adam Santoro · Ryan Faulkner · David Raposo · Jack Rae · Mike Chrzanowski · Theophane Weber · Daan Wierstra · Oriol Vinyals · Razvan Pascanu · Timothy Lillicrap -
2017 Poster: Distral: Robust multitask reinforcement learning »
Yee Teh · Victor Bapst · Wojciech Czarnecki · John Quan · James Kirkpatrick · Raia Hadsell · Nicolas Heess · Razvan Pascanu -
2017 Poster: A simple neural network module for relational reasoning »
Adam Santoro · David Raposo · David Barrett · Mateusz Malinowski · Razvan Pascanu · Peter Battaglia · Timothy Lillicrap -
2017 Poster: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Spotlight: A simple neural network module for relational reasoning »
Adam Santoro · David Raposo · David Barrett · Mateusz Malinowski · Razvan Pascanu · Peter Battaglia · Timothy Lillicrap -
2017 Oral: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Poster: Visual Interaction Networks: Learning a Physics Simulator from Video »
Nicholas Watters · Daniel Zoran · Theophane Weber · Peter Battaglia · Razvan Pascanu · Andrea Tacchetti -
2017 Poster: Filtering Variational Objectives »
Chris Maddison · John Lawson · George Tucker · Nicolas Heess · Mohammad Norouzi · Andriy Mnih · Arnaud Doucet · Yee Teh -
2017 Poster: Sobolev Training for Neural Networks »
Wojciech Czarnecki · Simon Osindero · Max Jaderberg · Grzegorz Swirszcz · Razvan Pascanu -
2016 Workshop: Continual Learning and Deep Networks »
Razvan Pascanu · Mark Ring · Tom Schaul -
2016 Poster: Interaction Networks for Learning about Objects, Relations and Physics »
Peter Battaglia · Razvan Pascanu · Matthew Lai · Danilo Jimenez Rezende · koray kavukcuoglu -
2015 Poster: Natural Neural Networks »
Guillaume Desjardins · Karen Simonyan · Razvan Pascanu · koray kavukcuoglu -
2014 Poster: Identifying and attacking the saddle point problem in high-dimensional non-convex optimization »
Yann N Dauphin · Razvan Pascanu · Caglar Gulcehre · Kyunghyun Cho · Surya Ganguli · Yoshua Bengio -
2014 Poster: On the Number of Linear Regions of Deep Neural Networks »
Guido F Montufar · Razvan Pascanu · Kyunghyun Cho · Yoshua Bengio