Timezone: »
Hypergraph partitioning is an important problem in machine learning, computer vision and network analytics. A widely used method for hypergraph partitioning relies on minimizing a normalized sum of the costs of partitioning hyperedges across clusters. Algorithmic solutions based on this approach assume that different partitions of a hyperedge incur the same cost. However, this assumption fails to leverage the fact that different subsets of vertices within the same hyperedge may have different structural importance. We hence propose a new hypergraph clustering technique, termed inhomogeneous hypergraph partitioning, which assigns different costs to different hyperedge cuts. We prove that inhomogeneous partitioning produces a quadratic approximation to the optimal solution if the inhomogeneous costs satisfy submodularity constraints. Moreover, we demonstrate that inhomogenous partitioning offers significant performance improvements in applications such as structure learning of rankings, subspace segmentation and motif clustering.
Author Information
Pan Li (University of Illinois Urbana-Champaign)
Olgica Milenkovic (University of Illinois at Urbana-Champaign)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Inhomogeneous Hypergraph Clustering with Applications »
Wed. Dec 6th 02:30 -- 06:30 AM Room Pacific Ballroom #31
More from the Same Authors
-
2021 Spotlight: Generic Neural Architecture Search via Regression »
Yuhong Li · Cong Hao · Pan Li · Jinjun Xiong · Deming Chen -
2021 : Semi-supervised Graph Neural Network for Particle-level Noise Removal »
Tianchun Li · Shikun Liu · Nhan Tran · Mia Liu · Pan Li -
2022 : Certified Graph Unlearning »
Eli Chien · Chao Pan · Olgica Milenkovic -
2021 Poster: Generic Neural Architecture Search via Regression »
Yuhong Li · Cong Hao · Pan Li · Jinjun Xiong · Deming Chen -
2021 Poster: Local Hyper-Flow Diffusion »
Kimon Fountoulakis · Pan Li · Shenghao Yang -
2021 Poster: Labeling Trick: A Theory of Using Graph Neural Networks for Multi-Node Representation Learning »
Muhan Zhang · Pan Li · Yinglong Xia · Kai Wang · Long Jin -
2021 Poster: Adversarial Graph Augmentation to Improve Graph Contrastive Learning »
Susheel Suresh · Pan Li · Cong Hao · Jennifer Neville -
2021 Poster: Nested Graph Neural Networks »
Muhan Zhang · Pan Li -
2019 Poster: Optimizing Generalized PageRank Methods for Seed-Expansion Community Detection »
Pan Li · Eli Chien · Olgica Milenkovic -
2019 Poster: Online Convex Matrix Factorization with Representative Regions »
Jianhao Peng · Olgica Milenkovic · Abhishek Agarwal -
2018 Poster: Query K-means Clustering and the Double Dixie Cup Problem »
Eli Chien · Chao Pan · Olgica Milenkovic -
2018 Poster: Revisiting Decomposable Submodular Function Minimization with Incidence Relations »
Pan Li · Olgica Milenkovic -
2018 Poster: Quadratic Decomposable Submodular Function Minimization »
Pan Li · Niao He · Olgica Milenkovic -
2012 Workshop: Social Choice: Theory and Practice »
Behrouz Touri · Olgica Milenkovic · Faramarz Fekri