Timezone: »
Author Information
Abbas Zaidi (Duke University)
Christoph Kurz (Helmholtz Zentrum München)
David Heckerman (Amazon)
YiJyun Lin (UNR)
My research interests revolve around the application of machine learning and natural language processing to misinformation and crisis management. My dissertation applies machine learning methods to improve identification of heterogeneous effects of climate change on violent conflict.
Stefan Riezler (Heidelberg University)
Ilya Shpitser (Johns Hopkins University)
Songbai Yan (University of California, San Diego)
Olivier Goudet (INRIA)
Yash Deshpande (MIT)
Judea Pearl (UCLA)
Judea Pearl is a professor of computer science and statistics at UCLA. He is a graduate of the Technion, Israel, and has joined the faculty of UCLA in 1970, where he conducts research in artificial intelligence, causal inference and philosophy of science. Pearl has authored three books: Heuristics (1984), Probabilistic Reasoning (1988), and Causality (2000;2009), the latter won the Lakatos Prize from the London School of Economics. He is a member of the National Academy of Engineering, the American Academy of Arts and Sciences, and a Fellow of the IEEE, AAAI and the Cognitive Science Society. Pearl received the 2008 Benjamin Franklin Medal from the Franklin Institute and the 2011 Rumelhart Prize from the Cognitive Science Society. In 2012, he received the Technion's Harvey Prize and the ACM Alan M. Turing Award.
Jovana Mitrovic (University of Oxford)
Brian Vegetabile (RAND Corporation)
Tae Hwy Lee (University of California, Riverside)
Tae-Hwy Lee is Professor of Economics at University of California Riverside. He received a Ph.D. in economics in 1990 from University of California San Diego under the supervision of Sir Clive W.J. Granger, a Nobel Laureate in Economic Science. He received his undergraduate degree in economics in 1985 from Seoul National University. His primary research and teaching areas are econometrics, statistics, and machine learning, with interests of applications in financial econometrics, time series forecasting, panel data models, maximum score regression, high dimensional modeling in conditional mean and covariance, and causal inference. He has published or has written more than 60 papers in the topics of nonstationary time series, nonlinear time series models, aggregation issues, specification testing, forecasting, inference in predictive regression, causality, volatility models, quantile models, factor models, nonparametric methods, shrinkage methods, model selection, model averaging, causal inference, machine learning methods, high dimensional models, panel data models, and etc. Professor Lee has received several awards including the NSF/ASA/BLS Senior Research Fellowship and the Econometric Theory Tjalling C. Koopmans Prize.
Karen Sachs (Stanford)
Karthika Mohan (UC Berkeley)
Reagan Rose (Harvard University)
Julius Ramakers (University of Duesseldorf)
Negar Hassanpour (University of Alberta)
Pierre Baldi (UC Irvine)
Razieh Nabi (Johns Hopkins University)
Noah Hammarlund (Indiana University)
Eli Sherman (Johns Hopkins University)
Carolin Lawrence (Heidelberg University)
Fattaneh Jabbari (University of Pittburgh)
Vira Semenova (MIT)
Maria Dimakopoulou (Stanford University)
Pratik Gajane (Université Lille 3)
Russell Greiner (University of Alberta)
Ilias Zadik (MIT)
I am a CDS Moore-Sloan (postdoctoral) fellow at the Center for Data Science of NYU and a member of it's Math and Data (MaD) group. I received my PhD on September 2019 from MIT , where I was advised by David Gamarnik. My research lies broadly in the interface of high dimensional statistics, the theory of machine learning and applied probability.
Alexander Blocker (Foresite Capital)
Hao Xu (University of California, Riverside)
Tal EL HAY (IBM Research)
Tony Jebara (Netflix)
Benoit Rostykus (Netflix)
More from the Same Authors
-
2021 : ECG for high-throughput screening of multiple diseases: Proof-of-concept using multi-diagnosis deep learning from population-based datasets »
Weijie Sun · Sunil Vasu Kalmady · Amir Salimi · Russell Greiner · Padma Kaul -
2021 : Deep learning reconstruction of the neutrino energy with a shallow Askaryan detector »
Stephen McAleer · Christian Glaser · Pierre Baldi -
2021 : G-SpaNet: Generalized Permutationless Set Assignment for Particle Physics using Symmetry Preserving Attention »
Alexander Shmakov · Shih-chieh Hsu · Pierre Baldi -
2022 : Geometry-aware Autoregressive Models for Calorimeter Shower Simulations »
Junze Liu · Aishik Ghosh · Dylan Smith · Pierre Baldi · Daniel Whiteson -
2022 : Foundations of Attention Mechanisms in Deep Neural Network Architectures »
Pierre Baldi · Roman Vershynin -
2022 : Probabilities of Causation: Adequate Size of Experimental and Observational Samples »
Ang Li · Ruirui Mao · Judea Pearl -
2022 : Petri Nets Enable Causal Reasoning in Dynamical Systems »
Ritwik Anand · Jeremy Zucker · Vartika Tewari · Karen Sachs · Olga Vitek -
2022 : Unit Selection: Learning Benefit Function from Finite Population Data »
Ang Li · Song Jiang · Yizhou Sun · Judea Pearl -
2022 : Feasible Adversarial Robust Reinforcement Learning for Underspecified Environments »
JB Lanier · Stephen McAleer · Pierre Baldi · Roy Fox -
2023 Poster: End-To-End Latent Variational Diffusion Models for Inverse Problems in High Energy Physics »
Alexander Shmakov · Kevin Greif · Michael Fenton · Aishik Ghosh · Pierre Baldi · Daniel Whiteson -
2023 Poster: AutoGO: Automated Computation Graph Optimization for Neural Network Evolution »
Mohammad Salameh · Keith Mills · Negar Hassanpour · Fred Han · Shuting Zhang · Wei Lu · Shangling Jui · CHUNHUA ZHOU · Fengyu Sun · Di Niu -
2023 Poster: Language Models can Solve Computer Tasks »
Geunwoo Kim · Pierre Baldi · Stephen McAleer -
2023 Poster: AI for Interpretable Chemistry: Predicting Radical Mechanistic Pathways via Contrastive Learning »
Mohammadamin Tavakoli · Pierre Baldi · Ann Marie Carlton · Yin Ting Chiu · Alexander Shmakov · David Van Vranken -
2023 Poster: ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid multi-scale climate models »
Sungduk Yu · Walter Hannah · Liran Peng · Jerry Lin · Mohamed Aziz Bhouri · Ritwik Gupta · Björn Lütjens · Justus Will · Gunnar Behrens · Nora Loose · Charles Stern · Tom Beucler · Bryce Harrop · Benjamin Hillman · Andrea Jenney · Savannah Ferretti · Nana Liu · Animashree Anandkumar · Noah Brenowitz · Veronika Eyring · Nicholas Geneva · Pierre Gentine · Stephan Mandt · Jaideep Pathak · Akshay Subramaniam · Carl Vondrick · Rose Yu · Laure Zanna · Ryan Abernathey · Fiaz Ahmed · David Bader · Pierre Baldi · Elizabeth Barnes · Christopher Bretherton · Julius Busecke · Peter Caldwell · Wayne Chuang · Yilun Han · YU HUANG · Fernando Iglesias-Suarez · Sanket Jantre · Karthik Kashinath · Marat Khairoutdinov · Thorsten Kurth · Nicholas Lutsko · Po-Lun Ma · Griffin Mooers · J. David Neelin · David Randall · Sara Shamekh · Mark Taylor · Nathan Urban · Janni Yuval · Guang Zhang · Tian Zheng · Mike Pritchard -
2023 Oral: ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid multi-scale climate models »
Sungduk Yu · Walter Hannah · Liran Peng · Jerry Lin · Mohamed Aziz Bhouri · Ritwik Gupta · Björn Lütjens · Justus Will · Gunnar Behrens · Nora Loose · Charles Stern · Tom Beucler · Bryce Harrop · Benjamin Hillman · Andrea Jenney · Savannah Ferretti · Nana Liu · Animashree Anandkumar · Noah Brenowitz · Veronika Eyring · Nicholas Geneva · Pierre Gentine · Stephan Mandt · Jaideep Pathak · Akshay Subramaniam · Carl Vondrick · Rose Yu · Laure Zanna · Ryan Abernathey · Fiaz Ahmed · David Bader · Pierre Baldi · Elizabeth Barnes · Christopher Bretherton · Julius Busecke · Peter Caldwell · Wayne Chuang · Yilun Han · YU HUANG · Fernando Iglesias-Suarez · Sanket Jantre · Karthik Kashinath · Marat Khairoutdinov · Thorsten Kurth · Nicholas Lutsko · Po-Lun Ma · Griffin Mooers · J. David Neelin · David Randall · Sara Shamekh · Mark Taylor · Nathan Urban · Janni Yuval · Guang Zhang · Tian Zheng · Mike Pritchard -
2022 : Opening Keynote for nCSI »
Judea Pearl -
2022 : Improving ECG-based COVID-19 diagnosis and mortality predictions using pre-pandemic medical records at population-scale »
Weijie Sun · Sunil Vasu Kalmady · Nariman Sepehrvand · Luan Chu · Zihan Wang · Amir Salimi · Abram Hindle · Russell Greiner · Padma Kaul -
2022 : Foundations of Attention Mechanisms in Deep Neural Network Architectures »
Pierre Baldi · Roman Vershynin -
2022 : Panel Discussion »
Cheng Zhang · Mihaela van der Schaar · Ilya Shpitser · Aapo Hyvarinen · Yoshua Bengio · Bernhard Schölkopf -
2022 Poster: Archimedes Meets Privacy: On Privately Estimating Quantiles in High Dimensions Under Minimal Assumptions »
Omri Ben-Eliezer · Dan Mikulincer · Ilias Zadik -
2022 Poster: The Franz-Parisi Criterion and Computational Trade-offs in High Dimensional Statistics »
Afonso S Bandeira · Ahmed El Alaoui · Samuel Hopkins · Tselil Schramm · Alexander S Wein · Ilias Zadik -
2022 Poster: Causal Discovery in Linear Latent Variable Models Subject to Measurement Error »
Yuqin Yang · AmirEmad Ghassami · Mohamed Nafea · Negar Kiyavash · Kun Zhang · Ilya Shpitser -
2022 Poster: Causal Inference with Non-IID Data using Linear Graphical Models »
Chi Zhang · Karthika Mohan · Judea Pearl -
2021 Workshop: Causal Inference Challenges in Sequential Decision Making: Bridging Theory and Practice »
Aurelien Bibaut · Maria Dimakopoulou · Nathan Kallus · Xinkun Nie · Masatoshi Uehara · Kelly Zhang -
2021 Workshop: Causal Inference & Machine Learning: Why now? »
Elias Bareinboim · Bernhard Schölkopf · Terrence Sejnowski · Yoshua Bengio · Judea Pearl -
2021 Poster: Risk Minimization from Adaptively Collected Data: Guarantees for Supervised and Policy Learning »
Aurelien Bibaut · Nathan Kallus · Maria Dimakopoulou · Antoine Chambaz · Mark van der Laan -
2021 Poster: On the Cryptographic Hardness of Learning Single Periodic Neurons »
Min Jae Song · Ilias Zadik · Joan Bruna -
2021 Poster: XDO: A Double Oracle Algorithm for Extensive-Form Games »
Stephen McAleer · JB Lanier · Kevin A Wang · Pierre Baldi · Roy Fox -
2021 Poster: Post-Contextual-Bandit Inference »
Aurelien Bibaut · Maria Dimakopoulou · Nathan Kallus · Antoine Chambaz · Mark van der Laan -
2021 Poster: Online Multi-Armed Bandits with Adaptive Inference »
Maria Dimakopoulou · Zhimei Ren · Zhengyuan Zhou -
2020 Poster: Shared Space Transfer Learning for analyzing multi-site fMRI data »
Tony Muhammad Yousefnezhad · Alessandro Selvitella · Daoqiang Zhang · Andrew Greenshaw · Russell Greiner -
2020 Poster: Pipeline PSRO: A Scalable Approach for Finding Approximate Nash Equilibria in Large Games »
Stephen McAleer · JB Lanier · Roy Fox · Pierre Baldi -
2020 : Live Q&A »
Yves Raimond · Cristina Segalin · Dong Liu · Selen Uguroglu · Benoit Rostykus · Harald Steck · Avneesh Saluja · Maria Dimakopoulou · Justin Basilico -
2020 : Machine Learning for Systems »
Benoit Rostykus -
2019 : Coffee break, posters, and 1-on-1 discussions »
Julius von Kügelgen · David Rohde · Candice Schumann · Grace Charles · Victor Veitch · Vira Semenova · Mert Demirer · Vasilis Syrgkanis · Suraj Nair · Aahlad Puli · Masatoshi Uehara · Aditya Gopalan · Yi Ding · Ignavier Ng · Khashayar Khosravi · Eli Sherman · Shuxi Zeng · Aleksander Wieczorek · Hao Liu · Kyra Gan · Jason Hartford · Miruna Oprescu · Alexander D'Amour · Jörn Boehnke · Yuta Saito · Théophile Griveau-Billion · Chirag Modi · Shyngys Karimov · Jeroen Berrevoets · Logan Graham · Imke Mayer · Dhanya Sridhar · Issa Dahabreh · Alan Mishler · Duncan Wadsworth · Khizar Qureshi · Rahul Ladhania · Gota Morishita · Paul Welle -
2019 : Poster Spotlights »
Théophile Griveau-Billion · Rahul Singh · Zichen Zhang · Ciarán Lee · Jesse Krijthe · Grace Charles · Vira Semenova · Rahul Ladhania · Miruna Oprescu -
2019 : Coffee break, posters, and 1-on-1 discussions »
Yangyi Lu · Daniel Chen · Hongseok Namkoong · Marie Charpignon · Maja Rudolph · Amanda Coston · Julius von Kügelgen · Niranjani Prasad · Paramveer Dhillon · Yunzong Xu · Yixin Wang · Alexander Markham · David Rohde · Rahul Singh · Zichen Zhang · Negar Hassanpour · Ankit Sharma · Ciarán Lee · Jean Pouget-Abadie · Jesse Krijthe · Divyat Mahajan · Nan Rosemary Ke · Peter Wirnsberger · Vira Semenova · Dmytro Mykhaylov · Dennis Shen · Kenta Takatsu · Liyang Sun · Jeremy Yang · Alexander Franks · Pak Kan Wong · Tauhid Zaman · Shira Mitchell · min kyoung kang · Qi Yang -
2019 Poster: The Label Complexity of Active Learning from Observational Data »
Songbai Yan · Kamalika Chaudhuri · Tara Javidi -
2019 Poster: Modeling Dynamic Functional Connectivity with Latent Factor Gaussian Processes »
Lingge Li · Dustin Pluta · Babak Shahbaba · Norbert Fortin · Hernando Ombao · Pierre Baldi -
2019 Poster: Learning Macroscopic Brain Connectomes via Group-Sparse Factorization »
Farzane Aminmansour · Andrew Patterson · Lei Le · Yisu Peng · Daniel Mitchell · Franco Pestilli · Cesar F Caiafa · Russell Greiner · Martha White -
2018 : Poster Session »
Carl Trimbach · Mennatullah Siam · Rodrigo Toro Icarte · Zhongtian Dai · Sheila McIlraith · Matthew Rahtz · Robert Sheline · Christopher MacLellan · Carolin Lawrence · Stefan Riezler · Dylan Hadfield-Menell · Fang-I Hsiao -
2018 Poster: Causal Inference via Kernel Deviance Measures »
Jovana Mitrovic · Dino Sejdinovic · Yee Whye Teh -
2018 Poster: Identification and Estimation of Causal Effects from Dependent Data »
Eli Sherman · Ilya Shpitser -
2018 Spotlight: Causal Inference via Kernel Deviance Measures »
Jovana Mitrovic · Dino Sejdinovic · Yee Whye Teh -
2018 Spotlight: Identification and Estimation of Causal Effects from Dependent Data »
Eli Sherman · Ilya Shpitser -
2018 Poster: Scalable Coordinated Exploration in Concurrent Reinforcement Learning »
Maria Dimakopoulou · Ian Osband · Benjamin Van Roy -
2018 Poster: High Dimensional Linear Regression using Lattice Basis Reduction »
Ilias Zadik · David Gamarnik -
2018 Poster: On Neuronal Capacity »
Pierre Baldi · Roman Vershynin -
2018 Oral: On Neuronal Capacity »
Pierre Baldi · Roman Vershynin -
2017 : Contributed Talk 4 »
Judea Pearl -
2017 : Contributed Talk 3 »
Ilya Shpitser -
2017 : Coffee break and Poster Session I »
Nishith Khandwala · Steve Gallant · Gregory Way · Aniruddh Raghu · Li Shen · Aydan Gasimova · Alican Bozkurt · William Boag · Daniel Lopez-Martinez · Ulrich Bodenhofer · Samaneh Nasiri GhoshehBolagh · Michelle Guo · Christoph Kurz · Kirubin Pillay · Kimis Perros · George H Chen · Alexandre Yahi · Madhumita Sushil · Sanjay Purushotham · Elena Tutubalina · Tejpal Virdi · Marc-Andre Schulz · Samuel Weisenthal · Bharat Srikishan · Petar Veličković · Kartik Ahuja · Andrew Miller · Erin Craig · Disi Ji · Filip Dabek · Chloé Pou-Prom · Hejia Zhang · Janani Kalyanam · Wei-Hung Weng · Harish Bhat · Hugh Chen · Simon Kohl · Mingwu Gao · Tingting Zhu · Ming-Zher Poh · Iñigo Urteaga · Antoine Honoré · Alessandro De Palma · Maruan Al-Shedivat · Pranav Rajpurkar · Matthew McDermott · Vincent Chen · Yanan Sui · Yun-Geun Lee · Li-Fang Cheng · Chen Fang · Sibt ul Hussain · Cesare Furlanello · Zeev Waks · Hiba Chougrad · Hedvig Kjellstrom · Finale Doshi-Velez · Wolfgang Fruehwirt · Yanqing Zhang · Lily Hu · Junfang Chen · Sunho Park · Gatis Mikelsons · Jumana Dakka · Stephanie Hyland · yann chevaleyre · Hyunwoo Lee · Xavier Giro-i-Nieto · David Kale · Michael Hughes · Gabriel Erion · Rishab Mehra · William Zame · Stojan Trajanovski · Prithwish Chakraborty · Kelly Peterson · Muktabh Mayank Srivastava · Amy Jin · Heliodoro Tejeda Lemus · Priyadip Ray · Tamas Madl · Joseph Futoma · Enhao Gong · Syed Rameel Ahmad · Eric Lei · Ferdinand Legros -
2017 : Contributed Talk 2 »
Jovana Mitrovic -
2017 : Contributed Talk 1 »
David Heckerman -
2017 Poster: Inference in Graphical Models via Semidefinite Programming Hierarchies »
Murat Erdogdu · Yash Deshpande · Andrea Montanari -
2017 Poster: Revisiting Perceptron: Efficient and Label-Optimal Learning of Halfspaces »
Songbai Yan · Chicheng Zhang -
2016 Poster: Stochastic Structured Prediction under Bandit Feedback »
Artem Sokolov · Julia Kreutzer · Stefan Riezler · Christopher Lo -
2016 Poster: Consistent Estimation of Functions of Data Missing Non-Monotonically and Not at Random »
Ilya Shpitser -
2016 Poster: Active Learning from Imperfect Labelers »
Songbai Yan · Kamalika Chaudhuri · Tara Javidi -
2015 Poster: Segregated Graphs and Marginals of Chain Graph Models »
Ilya Shpitser -
2015 Poster: Bandits with Unobserved Confounders: A Causal Approach »
Elias Bareinboim · Andrew Forney · Judea Pearl -
2014 Workshop: High-energy particle physics, machine learning, and the HiggsML data challenge (HEPML) »
Glen Cowan · Balázs Kégl · Kyle Cranmer · Gábor Melis · Tim Salimans · Vladimir Vava Gligorov · Daniel Whiteson · Lester Mackey · Wojciech Kotlowski · Roberto Díaz Morales · Pierre Baldi · Cecile Germain · David Rousseau · Isabelle Guyon · Tianqi Chen -
2014 Poster: Transportability from Multiple Environments with Limited Experiments: Completeness Results »
Elias Bareinboim · Judea Pearl -
2014 Poster: Augmentative Message Passing for Traveling Salesman Problem and Graph Partitioning »
Mohsen Ravanbakhsh · Reihaneh Rabbany · Russell Greiner -
2014 Poster: Graphical Models for Recovering Probabilistic and Causal Queries from Missing Data »
Karthika Mohan · Judea Pearl -
2014 Spotlight: Transportability from Multiple Environments with Limited Experiments: Completeness Results »
Elias Bareinboim · Judea Pearl -
2014 Poster: Searching for Higgs Boson Decay Modes with Deep Learning »
Peter Sadowski · Daniel Whiteson · Pierre Baldi -
2014 Spotlight: Searching for Higgs Boson Decay Modes with Deep Learning »
Peter Sadowski · Daniel Whiteson · Pierre Baldi -
2013 Poster: Online Learning with Costly Features and Labels »
Navid Zolghadr · Gábor Bartók · Russell Greiner · András György · Csaba Szepesvari -
2013 Poster: Transportability from Multiple Environments with Limited Experiments »
Elias Bareinboim · Sanghack Lee · Vasant Honavar · Judea Pearl -
2013 Poster: Graphical Models for Inference with Missing Data »
Karthika Mohan · Judea Pearl · Jin Tian -
2013 Poster: Understanding Dropout »
Pierre Baldi · Peter Sadowski -
2013 Oral: Understanding Dropout »
Pierre Baldi · Peter Sadowski -
2013 Spotlight: Graphical Models for Inference with Missing Data »
Karthika Mohan · Judea Pearl · Jin Tian -
2013 Tutorial: Causes and Counterfactuals: Concepts, Principles and Tools. »
Judea Pearl · Elias Bareinboim -
2012 Poster: Deep Spatio-Temporal Architectures and Learning for Protein Structure Prediction »
Pietro Di Lena · Pierre Baldi · Ken Nagata -
2012 Spotlight: Deep Spatio-Temporal Architectures and Learning for Protein Structure Prediction »
Pietro Di Lena · Pierre Baldi · Ken Nagata -
2011 Poster: A Machine Learning Approach to Predict Chemical Reactions »
Matthew A Kayala · Pierre Baldi -
2011 Poster: Learning Patient-Specific Cancer Survival Distributions as a Sequence of Dependent Regressors »
Chun-Nam Yu · Russell Greiner · Hsiu-Chin Lin · Vickie Baracos -
2010 Workshop: Charting Chemical Space: Challenges and Opportunities for AI and Machine Learning »
Pierre Baldi · Klaus-Robert Müller · Gisbert Schneider -
2007 Poster: Mining Internet-Scale Software Repositories »
Erik Linstead · Paul Rigor · sushil bajracharya · cristina lopes · Pierre Baldi -
2006 Poster: Learning to Model Spatial Dependency: Semi-Supervised Discriminative Random Fields »
Chi-Hoon Lee · Shaojun Wang · Feng Jiao · Dale Schuurmans · Russell Greiner -
2006 Poster: A Scalable Machine Learning Approach to Go »
Lin Wu · Pierre Baldi -
2006 Talk: A Scalable Machine Learning Approach to Go »
Lin Wu · Pierre Baldi