Timezone: »
In this work we develop a fast saliency detection method that can be applied to any differentiable image classifier. We train a masking model to manipulate the scores of the classifier by masking salient parts of the input image. Our model generalises well to unseen images and requires a single forward pass to perform saliency detection, therefore suitable for use in real-time systems. We test our approach on CIFAR-10 and ImageNet datasets and show that the produced saliency maps are easily interpretable, sharp, and free of artifacts. We suggest a new metric for saliency and test our method on the ImageNet object localisation task. We achieve results outperforming other weakly supervised methods.
Author Information
Piotr Dabkowski (Cambridge University)
Yarin Gal (University of Oxford)
More from the Same Authors
-
2017 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Andrew Wilson · Diederik Kingma · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2017 Poster: Concrete Dropout »
Yarin Gal · Jiri Hron · Alex Kendall -
2017 Poster: What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? »
Alex Kendall · Yarin Gal -
2017 Spotlight: What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? »
Alex Kendall · Yarin Gal -
2016 : Panel Discussion »
Shakir Mohamed · David Blei · Ryan Adams · José Miguel Hernández-Lobato · Ian Goodfellow · Yarin Gal -
2016 Workshop: Bayesian Deep Learning »
Yarin Gal · Christos Louizos · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2016 Poster: A Theoretically Grounded Application of Dropout in Recurrent Neural Networks »
Yarin Gal · Zoubin Ghahramani -
2014 Poster: Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models »
Yarin Gal · Mark van der Wilk · Carl Edward Rasmussen