Timezone: »
Matrix factorization (MF) is one of the most popular techniques for product recommendation, but is known to suffer from serious cold-start problems. Item cold-start problems are particularly acute in settings such as Tweet recommendation where new items arrive continuously. In this paper, we present a meta-learning strategy to address item cold-start when new items arrive continuously. We propose two deep neural network architectures that implement our meta-learning strategy. The first architecture learns a linear classifier whose weights are determined by the item history while the second architecture learns a neural network whose biases are instead adjusted. We evaluate our techniques on the real-world problem of Tweet recommendation. On production data at Twitter, we demonstrate that our proposed techniques significantly beat the MF baseline and also outperform production models for Tweet recommendation.
Author Information
Manasi Vartak (Massachusetts Institute of Technology)
Arvind Thiagarajan (Twitter)
Conrado Miranda
Jeshua Bratman (Twitter)
Hugo Larochelle (Google Brain)
More from the Same Authors
-
2021 : A Unified Few-Shot Classification Benchmark to Compare Transfer and Meta Learning Approaches »
Vincent Dumoulin · Neil Houlsby · Utku Evci · Xiaohua Zhai · Ross Goroshin · Sylvain Gelly · Hugo Larochelle -
2022 : Teaching Algorithmic Reasoning via In-context Learning »
Hattie Zhou · Azade Nova · aaron courville · Hugo Larochelle · Behnam Neyshabur · Hanie Sedghi -
2023 Poster: SatBird: a Dataset for Bird Species Distribution Modeling using Remote Sensing and Citizen Science Data »
Mélisande Teng · Amna Elmustafa · Benjamin Akera · Hager Radi · Yoshua Bengio · Hugo Larochelle · David Rolnick -
2022 : Teaching Algorithmic Reasoning via In-context Learning »
Hattie Zhou · Azade Nova · aaron courville · Hugo Larochelle · Behnam Neyshabur · Hanie Sedghi -
2021 : Invited Talk - Hugo Larochelle »
Hugo Larochelle -
2021 Poster: Learning to Combine Per-Example Solutions for Neural Program Synthesis »
Disha Shrivastava · Hugo Larochelle · Daniel Tarlow -
2020 Poster: Your GAN is Secretly an Energy-based Model and You Should Use Discriminator Driven Latent Sampling »
Tong Che · Ruixiang ZHANG · Jascha Sohl-Dickstein · Hugo Larochelle · Liam Paull · Yuan Cao · Yoshua Bengio -
2020 Poster: Learning Graph Structure With A Finite-State Automaton Layer »
Daniel D. Johnson · Hugo Larochelle · Danny Tarlow -
2020 Poster: Learning to Execute Programs with Instruction Pointer Attention Graph Neural Networks »
David Bieber · Charles Sutton · Hugo Larochelle · Danny Tarlow -
2020 Spotlight: Learning Graph Structure With A Finite-State Automaton Layer »
Daniel D. Johnson · Hugo Larochelle · Danny Tarlow -
2020 Poster: Curriculum By Smoothing »
Samarth Sinha · Animesh Garg · Hugo Larochelle -
2020 Spotlight: Curriculum By Smoothing »
Samarth Sinha · Animesh Garg · Hugo Larochelle -
2020 : Discussion Panel: Hugo Larochelle, Finale Doshi-Velez, Devi Parikh, Marc Deisenroth, Julien Mairal, Katja Hofmann, Phillip Isola, and Michael Bowling »
Hugo Larochelle · Finale Doshi-Velez · Marc Deisenroth · Devi Parikh · Julien Mairal · Katja Hofmann · Phillip Isola · Michael Bowling -
2018 : TBA 3 »
Hugo Larochelle -
2017 Workshop: Workshop on Meta-Learning »
Roberto Calandra · Frank Hutter · Hugo Larochelle · Sergey Levine -
2017 : Updates from Current ML Systems (TensorFlow, PyTorch, Caffe2, CNTK, MXNet, TVM, Clipper, MacroBase, ModelDB) »
Rajat Monga · Soumith Chintala · Cha Zhang · Tianqi Chen · Daniel Crankshaw · Kai Sheng Tai · Andrew Tulloch · Manasi Vartak -
2017 Poster: Modulating early visual processing by language »
Harm de Vries · Florian Strub · Jeremie Mary · Hugo Larochelle · Olivier Pietquin · Aaron Courville -
2017 Spotlight: Modulating early visual processing by language »
Harm de Vries · Florian Strub · Jeremie Mary · Hugo Larochelle · Olivier Pietquin · Aaron Courville -
2014 Session: Oral Session 3 »
Hugo Larochelle -
2014 Poster: An Autoencoder Approach to Learning Bilingual Word Representations »
Sarath Chandar · Stanislas Lauly · Hugo Larochelle · Mitesh Khapra · Balaraman Ravindran · Vikas C Raykar · Amrita Saha -
2013 Workshop: Deep Learning »
Yoshua Bengio · Hugo Larochelle · Russ Salakhutdinov · Tomas Mikolov · Matthew D Zeiler · David Mcallester · Nando de Freitas · Josh Tenenbaum · Jian Zhou · Volodymyr Mnih -
2013 Session: Spotlight Session 10 »
Hugo Larochelle -
2013 Session: Spotlight Session 9 »
Hugo Larochelle -
2013 Session: Spotlight Session 8 »
Hugo Larochelle -
2013 Session: Spotlight Session 7 »
Hugo Larochelle -
2013 Session: Spotlight Session 6 »
Hugo Larochelle -
2013 Session: Spotlight Session 5 »
Hugo Larochelle -
2013 Poster: RNADE: The real-valued neural autoregressive density-estimator »
Benigno Uria · Iain Murray · Hugo Larochelle -
2013 Session: Spotlight Session 4 »
Hugo Larochelle -
2013 Session: Spotlight Session 3 »
Hugo Larochelle -
2013 Session: Spotlight Session 2 »
Hugo Larochelle -
2013 Session: Spotlight Session 1 »
Hugo Larochelle -
2012 Poster: A Neural Autoregressive Topic Model »
Hugo Larochelle · Stanislas Lauly -
2012 Poster: Practical Bayesian Optimization of Machine Learning Algorithms »
Jasper Snoek · Hugo Larochelle · Ryan Adams -
2010 Oral: Learning to combine foveal glimpses with a third-order Boltzmann machine »
Hugo Larochelle · Geoffrey E Hinton -
2010 Poster: Learning to combine foveal glimpses with a third-order Boltzmann machine »
Hugo Larochelle · Geoffrey E Hinton -
2006 Poster: Greedy Layer-Wise Training of Deep Networks »
Yoshua Bengio · Pascal Lamblin · Dan Popovici · Hugo Larochelle -
2006 Talk: Greedy Layer-Wise Training of Deep Networks »
Yoshua Bengio · Pascal Lamblin · Dan Popovici · Hugo Larochelle