Timezone: »

Unsupervised Transformation Learning via Convex Relaxations
Tatsunori Hashimoto · Percy Liang · John Duchi

Mon Dec 04 06:30 PM -- 10:30 PM (PST) @ Pacific Ballroom #15

Our goal is to extract meaningful transformations from raw images, such as varying the thickness of lines in handwriting or the lighting in a portrait. We propose an unsupervised approach to learn such transformations by attempting to reconstruct an image from a linear combination of transformations of its nearest neighbors. On handwritten digits and celebrity portraits, we show that even with linear transformations, our method generates visually high-quality modified images. Moreover, since our method is semiparametric and does not model the data distribution, the learned transformations extrapolate off the training data and can be applied to new types of images.

Author Information

Tatsunori Hashimoto (Stanford)
Percy Liang (Stanford University)
Percy Liang

Percy Liang is an Assistant Professor of Computer Science at Stanford University (B.S. from MIT, 2004; Ph.D. from UC Berkeley, 2011). His research spans machine learning and natural language processing, with the goal of developing trustworthy agents that can communicate effectively with people and improve over time through interaction. Specific topics include question answering, dialogue, program induction, interactive learning, and reliable machine learning. His awards include the IJCAI Computers and Thought Award (2016), an NSF CAREER Award (2016), a Sloan Research Fellowship (2015), and a Microsoft Research Faculty Fellowship (2014).

John Duchi (Stanford)

More from the Same Authors