Timezone: »
Stochastic optimization of continuous objectives is at the heart of modern machine learning. However, many important problems are of discrete nature and often involve submodular objectives. We seek to unleash the power of stochastic continuous optimization, namely stochastic gradient descent and its variants, to such discrete problems. We first introduce the problem of stochastic submodular optimization, where one needs to optimize a submodular objective which is given as an expectation. Our model captures situations where the discrete objective arises as an empirical risk (e.g., in the case of exemplar-based clustering), or is given as an explicit stochastic model (e.g., in the case of influence maximization in social networks). By exploiting that common extensions act linearly on the class of submodular functions, we employ projected stochastic gradient ascent and its variants in the continuous domain, and perform rounding to obtain discrete solutions. We focus on the rich and widely used family of weighted coverage functions. We show that our approach yields solutions that are guaranteed to match the optimal approximation guarantees, while reducing the computational cost by several orders of magnitude, as we demonstrate empirically.
Author Information
Mohammad Karimi (ETH Zurich)
Mario Lucic (Google Brain (Zurich))
Hamed Hassani (UPenn)
Andreas Krause (ETH Zurich)
More from the Same Authors
-
2021 Spotlight: DiBS: Differentiable Bayesian Structure Learning »
Lars Lorch · Jonas Rothfuss · Bernhard Schölkopf · Andreas Krause -
2021 : Towards Safe Global Optimality in Robot Learning with GoSafe »
Bhavya Sukhija · Matteo Turchetta · Andreas Krause · Sebastian Trimpe · Dominik Baumann -
2021 : DiBS: Differentiable Bayesian Structure Learning »
Lars Lorch · Jonas Rothfuss · Bernhard Schölkopf · Andreas Krause -
2021 : Learning Single-Cell Perturbation Responses using Neural Optimal Transport »
Charlotte Bunne · Stefan Stark · Gabriele Gut · Andreas Krause · Gunnar Rätsch · Lucas Pelkmans · Kjong Lehmann -
2022 : Active Bayesian Causal Inference »
Christian Toth · Lars Lorch · Christian Knoll · Andreas Krause · Franz Pernkopf · Robert Peharz · Julius von Kügelgen -
2022 : Active Bayesian Causal inference »
Christian Toth · Lars Lorch · Christian Knoll · Andreas Krause · Franz Pernkopf · Robert Peharz · Julius von Kügelgen -
2022 : Amortized Inference for Causal Structure Learning »
Lars Lorch · Scott Sussex · Jonas Rothfuss · Andreas Krause · Bernhard Schölkopf -
2022 : MARS: Meta-learning as score matching in the function space »
Kruno Lehman · Jonas Rothfuss · Andreas Krause -
2022 : Neural All-Pairs Shortest Path for Reinforcement Learning »
Cristina Pinneri · Georg Martius · Andreas Krause -
2022 Spotlight: Lightning Talks 1A-3 »
Kimia Noorbakhsh · Ronan Perry · Qi Lyu · Jiawei Jiang · Christian Toth · Olivier Jeunen · Xin Liu · Yuan Cheng · Lei Li · Manuel Rodriguez · Julius von Kügelgen · Lars Lorch · Nicolas Donati · Lukas Burkhalter · Xiao Fu · Zhongdao Wang · Songtao Feng · Ciarán Gilligan-Lee · Rishabh Mehrotra · Fangcheng Fu · Jing Yang · Bernhard Schölkopf · Ya-Li Li · Christian Knoll · Maks Ovsjanikov · Andreas Krause · Shengjin Wang · Hong Zhang · Mounia Lalmas · Bolin Ding · Bo Du · Yingbin Liang · Franz Pernkopf · Robert Peharz · Anwar Hithnawi · Julius von Kügelgen · Bo Li · Ce Zhang -
2022 Spotlight: Active Bayesian Causal Inference »
Christian Toth · Lars Lorch · Christian Knoll · Andreas Krause · Franz Pernkopf · Robert Peharz · Julius von Kügelgen -
2022 Poster: Supervised Training of Conditional Monge Maps »
Charlotte Bunne · Andreas Krause · Marco Cuturi -
2022 Poster: Near-Optimal Multi-Agent Learning for Safe Coverage Control »
Manish Prajapat · Matteo Turchetta · Melanie Zeilinger · Andreas Krause -
2022 Poster: Collaborative Learning of Discrete Distributions under Heterogeneity and Communication Constraints »
Xinmeng Huang · Donghwan Lee · Edgar Dobriban · Hamed Hassani -
2022 Poster: Amortized Inference for Causal Structure Learning »
Lars Lorch · Scott Sussex · Jonas Rothfuss · Andreas Krause · Bernhard Schölkopf -
2022 Poster: Movement Penalized Bayesian Optimization with Application to Wind Energy Systems »
Shyam Sundhar Ramesh · Pier Giuseppe Sessa · Andreas Krause · Ilija Bogunovic -
2022 Poster: Experimental Design for Linear Functionals in Reproducing Kernel Hilbert Spaces »
Mojmir Mutny · Andreas Krause -
2022 Poster: Graph Neural Network Bandits »
Parnian Kassraie · Andreas Krause · Ilija Bogunovic -
2022 Poster: Probable Domain Generalization via Quantile Risk Minimization »
Cian Eastwood · Alexander Robey · Shashank Singh · Julius von Kügelgen · Hamed Hassani · George J. Pappas · Bernhard Schölkopf -
2022 Poster: FedAvg with Fine Tuning: Local Updates Lead to Representation Learning »
Liam Collins · Hamed Hassani · Aryan Mokhtari · Sanjay Shakkottai -
2022 Poster: Active Bayesian Causal Inference »
Christian Toth · Lars Lorch · Christian Knoll · Andreas Krause · Franz Pernkopf · Robert Peharz · Julius von Kügelgen -
2022 Poster: Collaborative Linear Bandits with Adversarial Agents: Near-Optimal Regret Bounds »
Aritra Mitra · Arman Adibi · George J. Pappas · Hamed Hassani -
2022 Poster: A Robust Phased Elimination Algorithm for Corruption-Tolerant Gaussian Process Bandits »
Ilija Bogunovic · Zihan Li · Andreas Krause · Jonathan Scarlett -
2022 Poster: Active Exploration for Inverse Reinforcement Learning »
David Lindner · Andreas Krause · Giorgia Ramponi -
2022 Poster: Learning Long-Term Crop Management Strategies with CyclesGym »
Matteo Turchetta · Luca Corinzia · Scott Sussex · Amanda Burton · Juan Herrera · Ioannis Athanasiadis · Joachim M Buhmann · Andreas Krause -
2021 : Meta-Learning Reliable Priors in the Function Space »
Jonas Rothfuss · Dominique Heyn · jinfan Chen · Andreas Krause -
2021 Poster: Learning Graph Models for Retrosynthesis Prediction »
Vignesh Ram Somnath · Charlotte Bunne · Connor Coley · Andreas Krause · Regina Barzilay -
2021 Poster: Risk-averse Heteroscedastic Bayesian Optimization »
Anastasia Makarova · Ilnura Usmanova · Ilija Bogunovic · Andreas Krause -
2021 Poster: Hierarchical Skills for Efficient Exploration »
Jonas Gehring · Gabriel Synnaeve · Andreas Krause · Nicolas Usunier -
2021 Poster: Multi-Scale Representation Learning on Proteins »
Vignesh Ram Somnath · Charlotte Bunne · Andreas Krause -
2021 Poster: Learning Stable Deep Dynamics Models for Partially Observed or Delayed Dynamical Systems »
Andreas Schlaginhaufen · Philippe Wenk · Andreas Krause · Florian Dorfler -
2021 Poster: Information Directed Reward Learning for Reinforcement Learning »
David Lindner · Matteo Turchetta · Sebastian Tschiatschek · Kamil Ciosek · Andreas Krause -
2021 Poster: Robust Generalization despite Distribution Shift via Minimum Discriminating Information »
Tobias Sutter · Andreas Krause · Daniel Kuhn -
2021 Poster: Near-Optimal Multi-Perturbation Experimental Design for Causal Structure Learning »
Scott Sussex · Caroline Uhler · Andreas Krause -
2021 Poster: Distributional Gradient Matching for Learning Uncertain Neural Dynamics Models »
Lenart Treven · Philippe Wenk · Florian Dorfler · Andreas Krause -
2021 Poster: Meta-Learning Reliable Priors in the Function Space »
Jonas Rothfuss · Dominique Heyn · jinfan Chen · Andreas Krause -
2021 Poster: Misspecified Gaussian Process Bandit Optimization »
Ilija Bogunovic · Andreas Krause -
2021 Poster: DiBS: Differentiable Bayesian Structure Learning »
Lars Lorch · Jonas Rothfuss · Bernhard Schölkopf · Andreas Krause -
2021 Poster: Regret Bounds for Gaussian-Process Optimization in Large Domains »
Manuel Wuethrich · Bernhard Schölkopf · Andreas Krause -
2020 : Invited speaker: Adaptive Sampling for Stochastic Risk-Averse Learning, Andreas Krause »
Andreas Krause -
2020 Poster: Sinkhorn Natural Gradient for Generative Models »
Zebang Shen · Zhenfu Wang · Alejandro Ribeiro · Hamed Hassani -
2020 Poster: Sinkhorn Barycenter via Functional Gradient Descent »
Zebang Shen · Zhenfu Wang · Alejandro Ribeiro · Hamed Hassani -
2020 Spotlight: Sinkhorn Natural Gradient for Generative Models »
Zebang Shen · Zhenfu Wang · Alejandro Ribeiro · Hamed Hassani -
2020 Session: Orals & Spotlights Track 32: Optimization »
Hamed Hassani · Jeffrey A Bilmes -
2020 Poster: Adaptive Sampling for Stochastic Risk-Averse Learning »
Sebastian Curi · Kfir Y. Levy · Stefanie Jegelka · Andreas Krause -
2020 Poster: Contextual Games: Multi-Agent Learning with Side Information »
Pier Giuseppe Sessa · Ilija Bogunovic · Andreas Krause · Maryam Kamgarpour -
2020 Poster: Coresets via Bilevel Optimization for Continual Learning and Streaming »
Zalan Borsos · Mojmir Mutny · Andreas Krause -
2020 Poster: Gradient Estimation with Stochastic Softmax Tricks »
Max Paulus · Dami Choi · Danny Tarlow · Andreas Krause · Chris Maddison -
2020 Oral: Gradient Estimation with Stochastic Softmax Tricks »
Max Paulus · Dami Choi · Danny Tarlow · Andreas Krause · Chris Maddison -
2020 Poster: Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning »
Sebastian Curi · Felix Berkenkamp · Andreas Krause -
2020 Poster: Submodular Meta-Learning »
Arman Adibi · Aryan Mokhtari · Hamed Hassani -
2020 Poster: Learning to Play Sequential Games versus Unknown Opponents »
Pier Giuseppe Sessa · Ilija Bogunovic · Maryam Kamgarpour · Andreas Krause -
2020 Spotlight: Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning »
Sebastian Curi · Felix Berkenkamp · Andreas Krause -
2020 Poster: Safe Reinforcement Learning via Curriculum Induction »
Matteo Turchetta · Andrey Kolobov · Shital Shah · Andreas Krause · Alekh Agarwal -
2020 Spotlight: Safe Reinforcement Learning via Curriculum Induction »
Matteo Turchetta · Andrey Kolobov · Shital Shah · Andreas Krause · Alekh Agarwal -
2019 Poster: Efficiently Learning Fourier Sparse Set Functions »
Andisheh Amrollahi · Amir Zandieh · Michael Kapralov · Andreas Krause -
2019 Spotlight: Efficiently Learning Fourier Sparse Set Functions »
Andisheh Amrollahi · Amir Zandieh · Michael Kapralov · Andreas Krause -
2019 Poster: Stochastic Bandits with Context Distributions »
Johannes Kirschner · Andreas Krause -
2019 Poster: A Domain Agnostic Measure for Monitoring and Evaluating GANs »
Paulina Grnarova · Kfir Y. Levy · Aurelien Lucchi · Nathanael Perraudin · Ian Goodfellow · Thomas Hofmann · Andreas Krause -
2019 Poster: No-Regret Learning in Unknown Games with Correlated Payoffs »
Pier Giuseppe Sessa · Ilija Bogunovic · Maryam Kamgarpour · Andreas Krause -
2019 Poster: Teaching Multiple Concepts to a Forgetful Learner »
Anette Hunziker · Yuxin Chen · Oisin Mac Aodha · Manuel Gomez Rodriguez · Andreas Krause · Pietro Perona · Yisong Yue · Adish Singla -
2019 Poster: Adaptive Sequence Submodularity »
Marko Mitrovic · Ehsan Kazemi · Moran Feldman · Andreas Krause · Amin Karbasi -
2019 Poster: Online Continuous Submodular Maximization: From Full-Information to Bandit Feedback »
Mingrui Zhang · Lin Chen · Hamed Hassani · Amin Karbasi -
2019 Poster: Stochastic Continuous Greedy ++: When Upper and Lower Bounds Match »
Amin Karbasi · Hamed Hassani · Aryan Mokhtari · Zebang Shen -
2019 Poster: Robust and Communication-Efficient Collaborative Learning »
Amirhossein Reisizadeh · Hossein Taheri · Aryan Mokhtari · Hamed Hassani · Ramtin Pedarsani -
2019 Poster: Safe Exploration for Interactive Machine Learning »
Matteo Turchetta · Felix Berkenkamp · Andreas Krause -
2019 Poster: Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks »
Mahyar Fazlyab · Alexander Robey · Hamed Hassani · Manfred Morari · George J. Pappas -
2019 Spotlight: Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks »
Mahyar Fazlyab · Alexander Robey · Hamed Hassani · Manfred Morari · George J. Pappas -
2018 Poster: Provable Variational Inference for Constrained Log-Submodular Models »
Josip Djolonga · Stefanie Jegelka · Andreas Krause -
2018 Poster: Efficient High Dimensional Bayesian Optimization with Additivity and Quadrature Fourier Features »
Mojmir Mutny · Andreas Krause -
2018 Spotlight: Efficient High Dimensional Bayesian Optimization with Additivity and Quadrature Fourier Features »
Mojmir Mutny · Andreas Krause -
2018 Poster: Fairness Behind a Veil of Ignorance: A Welfare Analysis for Automated Decision Making »
Hoda Heidari · Claudio Ferrari · Krishna Gummadi · Andreas Krause -
2017 : Invited talk: Towards Safe Bayesian Optimization »
Andreas Krause -
2017 Workshop: Discrete Structures in Machine Learning »
Yaron Singer · Jeff A Bilmes · Andreas Krause · Stefanie Jegelka · Amin Karbasi -
2017 Poster: Interactive Submodular Bandit »
Lin Chen · Andreas Krause · Amin Karbasi -
2017 Poster: Safe Model-based Reinforcement Learning with Stability Guarantees »
Felix Berkenkamp · Matteo Turchetta · Angela Schoellig · Andreas Krause -
2017 Poster: Differentiable Learning of Submodular Functions »
Josip Djolonga · Andreas Krause -
2017 Spotlight: Differentiable Learning of Submodular Functions »
Josip Djolonga · Andreas Krause -
2017 Poster: Non-monotone Continuous DR-submodular Maximization: Structure and Algorithms »
Yatao Bian · Kfir Levy · Andreas Krause · Joachim M Buhmann -
2017 Poster: Gradient Methods for Submodular Maximization »
Hamed Hassani · Mahdi Soltanolkotabi · Amin Karbasi -
2016 Poster: Variational Inference in Mixed Probabilistic Submodular Models »
Josip Djolonga · Sebastian Tschiatschek · Andreas Krause -
2016 Poster: Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation »
Ilija Bogunovic · Jonathan Scarlett · Andreas Krause · Volkan Cevher -
2016 Poster: Cooperative Graphical Models »
Josip Djolonga · Stefanie Jegelka · Sebastian Tschiatschek · Andreas Krause -
2016 Poster: Fast and Provably Good Seedings for k-Means »
Olivier Bachem · Mario Lucic · Hamed Hassani · Andreas Krause -
2016 Oral: Fast and Provably Good Seedings for k-Means »
Olivier Bachem · Mario Lucic · Hamed Hassani · Andreas Krause -
2016 Poster: Safe Exploration in Finite Markov Decision Processes with Gaussian Processes »
Matteo Turchetta · Felix Berkenkamp · Andreas Krause -
2015 : Safe Exploration for Bayesian Optimization »
Andreas Krause -
2015 Poster: Distributed Submodular Cover: Succinctly Summarizing Massive Data »
Baharan Mirzasoleiman · Amin Karbasi · Ashwinkumar Badanidiyuru · Andreas Krause -
2015 Poster: Sampling from Probabilistic Submodular Models »
Alkis Gotovos · Hamed Hassani · Andreas Krause -
2015 Spotlight: Distributed Submodular Cover: Succinctly Summarizing Massive Data »
Baharan Mirzasoleiman · Amin Karbasi · Ashwinkumar Badanidiyuru · Andreas Krause -
2015 Oral: Sampling from Probabilistic Submodular Models »
Alkis Gotovos · Hamed Hassani · Andreas Krause -
2014 Workshop: NIPS’14 Workshop on Crowdsourcing and Machine Learning »
David Parkes · Denny Zhou · Chien-Ju Ho · Nihar Bhadresh Shah · Adish Singla · Jared Heyman · Edwin Simpson · Andreas Krause · Rafael Frongillo · Jennifer Wortman Vaughan · Panagiotis Papadimitriou · Damien Peters -
2014 Workshop: Discrete Optimization in Machine Learning »
Jeffrey A Bilmes · Andreas Krause · Stefanie Jegelka · S Thomas McCormick · Sebastian Nowozin · Yaron Singer · Dhruv Batra · Volkan Cevher -
2014 Poster: Fast and Robust Least Squares Estimation in Corrupted Linear Models »
Brian McWilliams · Gabriel Krummenacher · Mario Lucic · Joachim M Buhmann -
2014 Poster: Efficient Sampling for Learning Sparse Additive Models in High Dimensions »
Hemant Tyagi · Bernd Gärtner · Andreas Krause -
2014 Poster: From MAP to Marginals: Variational Inference in Bayesian Submodular Models »
Josip Djolonga · Andreas Krause -
2014 Spotlight: Fast and Robust Least Squares Estimation in Corrupted Linear Models »
Brian McWilliams · Gabriel Krummenacher · Mario Lucic · Joachim M Buhmann -
2014 Poster: Efficient Partial Monitoring with Prior Information »
Hastagiri P Vanchinathan · Gábor Bartók · Andreas Krause -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2013 Workshop: Bayesian Optimization in Theory and Practice »
Matthew Hoffman · Jasper Snoek · Nando de Freitas · Michael A Osborne · Ryan Adams · Sebastien Bubeck · Philipp Hennig · Remi Munos · Andreas Krause -
2013 Workshop: Discrete Optimization in Machine Learning: Connecting Theory and Practice »
Stefanie Jegelka · Andreas Krause · Pradeep Ravikumar · Kazuo Murota · Jeffrey A Bilmes · Yisong Yue · Michael Jordan -
2013 Poster: High-Dimensional Gaussian Process Bandits »
Josip Djolonga · Andreas Krause · Volkan Cevher -
2013 Poster: Distributed Submodular Maximization: Identifying Representative Elements in Massive Data »
Baharan Mirzasoleiman · Amin Karbasi · Rik Sarkar · Andreas Krause -
2012 Workshop: Discrete Optimization in Machine Learning (DISCML): Structure and Scalability »
Stefanie Jegelka · Andreas Krause · Jeffrey A Bilmes · Pradeep Ravikumar -
2011 Workshop: Discrete Optimization in Machine Learning (DISCML): Uncertainty, Generalization and Feedback »
Andreas Krause · Pradeep Ravikumar · Stefanie S Jegelka · Jeffrey A Bilmes -
2011 Oral: Scalable Training of Mixture Models via Coresets »
Dan Feldman · Matthew Faulkner · Andreas Krause -
2011 Poster: Scalable Training of Mixture Models via Coresets »
Dan Feldman · Matthew Faulkner · Andreas Krause -
2011 Poster: Contextual Gaussian Process Bandit Optimization »
Andreas Krause · Cheng Soon Ong -
2011 Poster: Crowdclustering »
Ryan G Gomes · Peter Welinder · Andreas Krause · Pietro Perona -
2010 Workshop: Discrete Optimization in Machine Learning: Structures, Algorithms and Applications »
Andreas Krause · Pradeep Ravikumar · Jeffrey A Bilmes · Stefanie Jegelka -
2010 Spotlight: Efficient Minimization of Decomposable Submodular Functions »
Peter G Stobbe · Andreas Krause -
2010 Poster: Discriminative Clustering by Regularized Information Maximization »
Ryan G Gomes · Andreas Krause · Pietro Perona -
2010 Poster: Efficient Minimization of Decomposable Submodular Functions »
Peter G Stobbe · Andreas Krause -
2010 Poster: Near-Optimal Bayesian Active Learning with Noisy Observations »
Daniel Golovin · Andreas Krause · Debajyoti Ray -
2009 Workshop: Discrete Optimization in Machine Learning: Submodularity, Polyhedra and Sparsity »
Andreas Krause · Pradeep Ravikumar · Jeffrey A Bilmes -
2009 Poster: Online Learning of Assignments »
Matthew Streeter · Daniel Golovin · Andreas Krause -
2009 Spotlight: Online Learning of Assignments »
Matthew Streeter · Daniel Golovin · Andreas Krause -
2007 Spotlight: Selecting Observations against Adversarial Objectives »
Andreas Krause · H. Brendan McMahan · Carlos Guestrin · Anupam Gupta -
2007 Poster: Selecting Observations against Adversarial Objectives »
Andreas Krause · H. Brendan McMahan · Carlos Guestrin · Anupam Gupta