Timezone: »
Learning individual-level causal effects from observational data, such as inferring the most effective medication for a specific patient, is a problem of growing importance for policy makers. The most important aspect of inferring causal effects from observational data is the handling of confounders, factors that affect both an intervention and its outcome. A carefully designed observational study attempts to measure all important confounders. However, even if one does not have direct access to all confounders, there may exist noisy and uncertain measurement of proxies for confounders. We build on recent advances in latent variable modeling to simultaneously estimate the unknown latent space summarizing the confounders and the causal effect. Our method is based on Variational Autoencoders (VAE) which follow the causal structure of inference with proxies. We show our method is significantly more robust than existing methods, and matches the state-of-the-art on previous benchmarks focused on individual treatment effects.
Author Information
Christos Louizos (University of Amsterdam)
Uri Shalit
Joris M Mooij (University of Amsterdam)
David Sontag (MIT)
Richard Zemel (Vector Institute/University of Toronto)
Max Welling (University of Amsterdam and University of California Irvine and CIFAR)
More from the Same Authors
-
2019 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Eric Nalisnick · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2019 Poster: Incremental Few-Shot Learning with Attention Attractor Networks »
Mengye Ren · Renjie Liao · Ethan Fetaya · Richard Zemel -
2019 Poster: SMILe: Scalable Meta Inverse Reinforcement Learning through Context-Conditional Policies »
Seyed Kamyar Seyed Ghasemipour · Shixiang (Shane) Gu · Richard Zemel -
2019 Poster: Efficient Graph Generation with Graph Recurrent Attention Networks »
Renjie Liao · Yujia Li · Yang Song · Shenlong Wang · Will Hamilton · David Duvenaud · Raquel Urtasun · Richard Zemel -
2018 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2018 Poster: Why Is My Classifier Discriminatory? »
Irene Chen · Fredrik Johansson · David Sontag -
2018 Poster: Learning Latent Subspaces in Variational Autoencoders »
Jack Klys · Jake Snell · Richard Zemel -
2018 Poster: Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions »
Sara Magliacane · Thijs van Ommen · Tom Claassen · Stephan Bongers · Philip Versteeg · Joris M Mooij -
2018 Spotlight: Why Is My Classifier Discriminatory? »
Irene Chen · Fredrik Johansson · David Sontag -
2018 Poster: Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer »
David Madras · Toni Pitassi · Richard Zemel -
2018 Poster: Neural Guided Constraint Logic Programming for Program Synthesis »
Lisa Zhang · Gregory Rosenblatt · Ethan Fetaya · Renjie Liao · William Byrd · Matthew Might · Raquel Urtasun · Richard Zemel -
2017 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Andrew Wilson · Diederik Kingma · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2017 Poster: Dualing GANs »
Yujia Li · Alexander Schwing · Kuan-Chieh Wang · Richard Zemel -
2017 Spotlight: Dualing GANs »
Yujia Li · Alexander Schwing · Kuan-Chieh Wang · Richard Zemel -
2017 Poster: Few-Shot Learning Through an Information Retrieval Lens »
Eleni Triantafillou · Richard Zemel · Raquel Urtasun -
2017 Poster: Bayesian Compression for Deep Learning »
Christos Louizos · Karen Ullrich · Max Welling -
2017 Poster: Prototypical Networks for Few-shot Learning »
Jake Snell · Kevin Swersky · Richard Zemel -
2016 Workshop: Bayesian Deep Learning »
Yarin Gal · Christos Louizos · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2016 Poster: Understanding the Effective Receptive Field in Deep Convolutional Neural Networks »
Wenjie Luo · Yujia Li · Raquel Urtasun · Richard Zemel -
2016 Poster: Ancestral Causal Inference »
Sara Magliacane · Tom Claassen · Joris M Mooij -
2016 Poster: Learning Deep Parsimonious Representations »
Renjie Liao · Alex Schwing · Richard Zemel · Raquel Urtasun -
2015 Workshop: Machine Learning For Healthcare (MLHC) »
Theofanis Karaletsos · Rajesh Ranganath · Suchi Saria · David Sontag -
2015 Poster: Skip-Thought Vectors »
Jamie Kiros · Yukun Zhu · Russ Salakhutdinov · Richard Zemel · Raquel Urtasun · Antonio Torralba · Sanja Fidler -
2015 Poster: Bayesian dark knowledge »
Anoop Korattikara Balan · Vivek Rathod · Kevin Murphy · Max Welling -
2015 Poster: Barrier Frank-Wolfe for Marginal Inference »
Rahul G Krishnan · Simon Lacoste-Julien · David Sontag -
2015 Poster: Exploring Models and Data for Image Question Answering »
Mengye Ren · Jamie Kiros · Richard Zemel -
2014 Workshop: Representation and Learning Methods for Complex Outputs »
Richard Zemel · Dale Schuurmans · Kilian Q Weinberger · Yuhong Guo · Jia Deng · Francesco Dinuzzo · Hal Daumé III · Honglak Lee · Noah A Smith · Richard Sutton · Jiaqian YU · Vitaly Kuznetsov · Luke Vilnis · Hanchen Xiong · Calvin Murdock · Thomas Unterthiner · Jean-Francis Roy · Martin Renqiang Min · Hichem SAHBI · Fabio Massimo Zanzotto -
2014 Poster: A Multiplicative Model for Learning Distributed Text-Based Attribute Representations »
Jamie Kiros · Richard Zemel · Russ Salakhutdinov -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser -
2013 Poster: A Determinantal Point Process Latent Variable Model for Inhibition in Neural Spiking Data »
Jasper Snoek · Richard Zemel · Ryan Adams -
2013 Poster: Discovering Hidden Variables in Noisy-Or Networks using Quartet Tests »
Yacine Jernite · Yoni Halpern · David Sontag -
2013 Poster: On the Expressive Power of Restricted Boltzmann Machines »
James Martens · Arkadev Chattopadhya · Toni Pitassi · Richard Zemel -
2012 Poster: Collaborative Ranking With 17 Parameters »
Maksims Volkovs · Richard Zemel -
2012 Poster: Bayesian n-Choose-k Models for Classification and Ranking »
Kevin Swersky · Daniel Tarlow · Richard Zemel · Ryan Adams · Brendan J Frey -
2012 Poster: Efficient Sampling for Bipartite Matching Problems »
Maksims Volkovs · Richard Zemel -
2012 Poster: Cardinality Restricted Boltzmann Machines »
Kevin Swersky · Daniel Tarlow · Ilya Sutskever · Richard Zemel · Russ Salakhutdinov · Ryan Adams -
2011 Poster: Complexity of Inference in Latent Dirichlet Allocation »
David Sontag · Daniel Roy -
2011 Poster: Learning sparse inverse covariance matrices in the presence of confounders »
Oliver Stegle · Christoph Lippert · Joris M Mooij · Neil D Lawrence · Karsten Borgwardt -
2011 Spotlight: Complexity of Inference in Latent Dirichlet Allocation »
David Sontag · Daniel Roy -
2011 Poster: Causal Discovery with Cyclic Additive Noise Models »
Joris M Mooij · Dominik Janzing · Tom Heskes · Bernhard Schölkopf -
2010 Spotlight: More data means less inference: A pseudo-max approach to structured learning »
David Sontag · Ofer Meshi · Tommi Jaakkola · Amir Globerson -
2010 Poster: More data means less inference: A pseudo-max approach to structured learning »
David Sontag · Ofer Meshi · Tommi Jaakkola · Amir Globerson -
2010 Poster: Probabilistic latent variable models for distinguishing between cause and effect »
Joris M Mooij · Oliver Stegle · Dominik Janzing · Kun Zhang · Bernhard Schölkopf -
2010 Talk: Opening Remarks and Awards »
Richard Zemel · Terrence Sejnowski · John Shawe-Taylor -
2009 Workshop: Approximate Learning of Large Scale Graphical Models »
Russ Salakhutdinov · Amir Globerson · David Sontag -
2009 Placeholder: Opening Remarks »
Richard Zemel -
2008 Workshop: Approximate inference - how far have we come? »
Amir Globerson · David Sontag · Tommi Jaakkola -
2008 Poster: Comparing model predictions of response bias and variance in cue combination »
Rama Natarajan · Iain Murray · Ladan Shams · Richard Zemel -
2008 Poster: Nonlinear causal discovery with additive noise models »
Patrik O Hoyer · Dominik Janzing · Joris M Mooij · Jonas Peters · Bernhard Schölkopf -
2008 Poster: Bounds on marginal probability distributions »
Joris M Mooij · Hilbert J Kappen -
2008 Poster: Clusters and Coarse Partitions in LP Relaxations »
David Sontag · Amir Globerson · Tommi Jaakkola -
2008 Poster: Learning Hybrid Models for Image Annotation with Partially Labeled Data »
Xuming He · Richard Zemel -
2008 Spotlight: Nonlinear causal discovery with additive noise models »
Patrik O Hoyer · Dominik Janzing · Joris M Mooij · Jonas Peters · Bernhard Schölkopf -
2008 Spotlight: Bounds on marginal probability distributions »
Joris M Mooij · Hilbert J Kappen -
2008 Spotlight: Clusters and Coarse Partitions in LP Relaxations »
David Sontag · Amir Globerson · Tommi Jaakkola -
2008 Poster: Competing RBM density models for classification of fMRI images »
Tanya Schmah · Geoffrey E Hinton · Richard Zemel -
2007 Oral: New Outer Bounds on the Marginal Polytope »
David Sontag · Tommi Jaakkola -
2007 Poster: New Outer Bounds on the Marginal Polytope »
David Sontag · Tommi Jaakkola