Timezone: »
Machine learning is now being used to make crucial decisions about people's lives. For nearly all of these decisions there is a risk that individuals of a certain race, gender, sexual orientation, or any other subpopulation are unfairly discriminated against. Our recent method has demonstrated how to use techniques from counterfactual inference to make predictions fair across different subpopulations. This method requires that one provides the causal model that generated the data at hand. In general, validating all causal implications of the model is not possible without further assumptions. Hence, it is desirable to integrate competing causal models to provide counterfactually fair decisions, regardless of which causal "world" is the correct one. In this paper, we show how it is possible to make predictions that are approximately fair with respect to multiple possible causal models at once, thus mitigating the problem of exact causal specification. We frame the goal of learning a fair classifier as an optimization problem with fairness constraints entailed by competing causal explanations. We show how this optimization problem can be efficiently solved using gradient-based methods. We demonstrate the flexibility of our model on two real-world fair classification problems. We show that our model can seamlessly balance fairness in multiple worlds with prediction accuracy.
Author Information
Chris Russell (The Alan Turing Institute/ The University of Surrey)
Matt Kusner (University of Oxford)
Joshua Loftus (The Alan Turing Institute)
Ricardo Silva (ucl.ac.uk)
More from the Same Authors
-
2022 : Pragmatic Fairness: Optimizing Policies with Outcome Disparity Control »
Limor Gultchin · Siyuan Guo · Alan Malek · Silvia Chiappa · Ricardo Silva -
2021 : Ricardo Silva - The Road to Causal Programming »
Ricardo Silva -
2021 Poster: Causal Effect Inference for Structured Treatments »
Jean Kaddour · Yuchen Zhu · Qi Liu · Matt Kusner · Ricardo Silva -
2020 Poster: What Did You Think Would Happen? Explaining Agent Behaviour through Intended Outcomes »
Herman Yau · Chris Russell · Simon Hadfield -
2019 : Poster Session »
Clement Canonne · Kwang-Sung Jun · Seth Neel · Di Wang · Giuseppe Vietri · Liwei Song · Jonathan Lebensold · Huanyu Zhang · Lovedeep Gondara · Ang Li · FatemehSadat Mireshghallah · Jinshuo Dong · Anand D Sarwate · Antti Koskela · Joonas Jälkö · Matt Kusner · Dingfan Chen · Mi Jung Park · Ashwin Machanavajjhala · Jayashree Kalpathy-Cramer · · Vitaly Feldman · Andrew Tomkins · Hai Phan · Hossein Esfandiari · Mimansa Jaiswal · Mrinank Sharma · Jeff Druce · Casey Meehan · Zhengli Zhao · Hsiang Hsu · Davis Railsback · Abraham Flaxman · · Julius Adebayo · Aleksandra Korolova · Jiaming Xu · Naoise Holohan · Samyadeep Basu · Matthew Joseph · My Thai · Xiaoqian Yang · Ellen Vitercik · Michael Hutchinson · Chenghong Wang · Gregory Yauney · Yuchao Tao · Chao Jin · Si Kai Lee · Audra McMillan · Rauf Izmailov · Jiayi Guo · Siddharth Swaroop · Tribhuvanesh Orekondy · Hadi Esmaeilzadeh · Kevin Procopio · Alkis Polyzotis · Jafar Mohammadi · Nitin Agrawal -
2019 : QUOTIENT: Two-Party Secure Neural Network Training & Prediction »
Nitin Agrawal · Matt Kusner · Adria Gascon -
2019 Poster: Fixing Implicit Derivatives: Trust-Region Based Learning of Continuous Energy Functions »
Chris Russell · Matteo Toso · Neill Campbell -
2018 Workshop: Machine Learning for Molecules and Materials »
José Miguel Hernández-Lobato · Klaus-Robert Müller · Brooks Paige · Matt Kusner · Stefan Chmiela · Kristof Schütt -
2018 Workshop: Critiquing and Correcting Trends in Machine Learning »
Thomas Rainforth · Matt Kusner · Benjamin Bloem-Reddy · Brooks Paige · Rich Caruana · Yee Whye Teh -
2017 Workshop: Machine Learning for Molecules and Materials »
Kristof Schütt · Klaus-Robert Müller · Anatole von Lilienfeld · José Miguel Hernández-Lobato · Klaus-Robert Müller · Alan Aspuru-Guzik · Bharath Ramsundar · Matt Kusner · Brooks Paige · Stefan Chmiela · Alexandre Tkatchenko · Anatole von Lilienfeld · Koji Tsuda -
2017 Poster: VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational Learning »
Akash Srivastava · Lazar Valkov · Chris Russell · Michael Gutmann · Charles Sutton -
2017 Poster: Counterfactual Fairness »
Matt Kusner · Joshua Loftus · Chris Russell · Ricardo Silva -
2017 Oral: Counterfactual Fairness »
Matt Kusner · Joshua Loftus · Chris Russell · Ricardo Silva