Timezone: »
We initiate a systematic investigation of distribution learning (density estimation) when the data is distributed across multiple servers. The servers must communicate with a referee and the goal is to estimate the underlying distribution with as few bits of communication as possible. We focus on non-parametric density estimation of discrete distributions with respect to the l1 and l2 norms. We provide the first non-trivial upper and lower bounds on the communication complexity of this basic estimation task in various settings of interest. Specifically, our results include the following: 1. When the unknown discrete distribution is unstructured and each server has only one sample, we show that any blackboard protocol (i.e., any protocol in which servers interact arbitrarily using public messages) that learns the distribution must essentially communicate the entire sample. 2. For the case of structured distributions, such as k-histograms and monotone distributions, we design distributed learning algorithms that achieve significantly better communication guarantees than the naive ones, and obtain tight upper and lower bounds in several regimes. Our distributed learning algorithms run in near-linear time and are robust to model misspecification. Our results provide insights on the interplay between structure and communication efficiency for a range of fundamental distribution estimation tasks.
Author Information
Ilias Diakonikolas (USC)
Elena Grigorescu (Purdue University)
Jerry Li (Berkeley)
Abhiram Natarajan (Purdue University)
Krzysztof Onak (IBM T.J. Watson Research Center)
Ludwig Schmidt (MIT)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Oral: Communication-Efficient Distributed Learning of Discrete Distributions »
Wed. Dec 6th 12:50 -- 01:05 AM Room Hall C
More from the Same Authors
-
2022 Spotlight: Lightning Talks 4A-2 »
Barakeel Fanseu Kamhoua · Hualin Zhang · Taiki Miyagawa · Tomoya Murata · Xin Lyu · Yan Dai · Elena Grigorescu · Zhipeng Tu · Lijun Zhang · Taiji Suzuki · Wei Jiang · Haipeng Luo · Lin Zhang · Xi Wang · Young-San Lin · Huan Xiong · Liyu Chen · Bin Gu · Jinfeng Yi · Yongqiang Chen · Sandeep Silwal · Yiguang Hong · Maoyuan Song · Lei Wang · Tianbao Yang · Han Yang · MA Kaili · Samson Zhou · Deming Yuan · Bo Han · Guodong Shi · Bo Li · James Cheng -
2022 Spotlight: Learning-Augmented Algorithms for Online Linear and Semidefinite Programming »
Elena Grigorescu · Young-San Lin · Sandeep Silwal · Maoyuan Song · Samson Zhou -
2022 Poster: Learning-Augmented Algorithms for Online Linear and Semidefinite Programming »
Elena Grigorescu · Young-San Lin · Sandeep Silwal · Maoyuan Song · Samson Zhou -
2018 Poster: Byzantine Stochastic Gradient Descent »
Dan Alistarh · Zeyuan Allen-Zhu · Jerry Li -
2018 Poster: Spectral Signatures in Backdoor Attacks »
Brandon Tran · Jerry Li · Aleksander Madry -
2018 Poster: Adversarially Robust Generalization Requires More Data »
Ludwig Schmidt · Shibani Santurkar · Dimitris Tsipras · Kunal Talwar · Aleksander Madry -
2018 Spotlight: Adversarially Robust Generalization Requires More Data »
Ludwig Schmidt · Shibani Santurkar · Dimitris Tsipras · Kunal Talwar · Aleksander Madry -
2017 Workshop: Deep Learning: Bridging Theory and Practice »
Sanjeev Arora · Maithra Raghu · Russ Salakhutdinov · Ludwig Schmidt · Oriol Vinyals -
2017 Poster: QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding »
Dan Alistarh · Demjan Grubic · Jerry Li · Ryota Tomioka · Milan Vojnovic -
2017 Spotlight: Communication-Efficient Stochastic Gradient Descent, with Applications to Neural Networks »
Dan Alistarh · Demjan Grubic · Jerry Li · Ryota Tomioka · Milan Vojnovic -
2017 Poster: On the Fine-Grained Complexity of Empirical Risk Minimization: Kernel Methods and Neural Networks »
Arturs Backurs · Piotr Indyk · Ludwig Schmidt -
2016 Poster: Fast recovery from a union of subspaces »
Chinmay Hegde · Piotr Indyk · Ludwig Schmidt -
2015 Poster: Practical and Optimal LSH for Angular Distance »
Alexandr Andoni · Piotr Indyk · Thijs Laarhoven · Ilya Razenshteyn · Ludwig Schmidt -
2015 Poster: Differentially Private Learning of Structured Discrete Distributions »
Ilias Diakonikolas · Moritz Hardt · Ludwig Schmidt