Timezone: »
Poster
Robust Conditional Probabilities
Yoav Wald · Amir Globerson
Conditional probabilities are a core concept in machine learning. For example, optimal prediction of a label $Y$ given an input $X$ corresponds to maximizing the conditional probability of $Y$ given $X$. A common approach to inference tasks is learning a model of conditional probabilities. However, these models are often based on strong assumptions (e.g., log-linear models), and hence their estimate of conditional probabilities is not robust and is highly dependent on the validity of their assumptions. Here we propose a framework for reasoning about conditional probabilities without assuming anything about the underlying distributions, except knowledge of their second order marginals, which can be estimated from data. We show how this setting leads to guaranteed bounds on conditional probabilities, which can be calculated efficiently in a variety of settings, including structured-prediction. Finally, we apply them to semi-supervised deep learning, obtaining results competitive with variational autoencoders.
Author Information
Yoav Wald (Hebrew University)
Amir Globerson (HUJI)
More from the Same Authors
-
2022 : Malign Overfitting: Interpolation and Invariance are Fundamentally at Odds »
Yoav Wald · Gal Yona · Uri Shalit · Yair Carmon -
2022 Poster: Bringing Image Scene Structure to Video via Frame-Clip Consistency of Object Tokens »
Elad Ben Avraham · Roei Herzig · Karttikeya Mangalam · Amir Bar · Anna Rohrbach · Leonid Karlinsky · Trevor Darrell · Amir Globerson -
2022 Poster: In the Eye of the Beholder: Robust Prediction with Causal User Modeling »
Amir Feder · Guy Horowitz · Yoav Wald · Roi Reichart · Nir Rosenfeld -
2022 Poster: Visual Prompting via Image Inpainting »
Amir Bar · Yossi Gandelsman · Trevor Darrell · Amir Globerson · Alexei Efros -
2021 Poster: A Theoretical Analysis of Fine-tuning with Linear Teachers »
Gal Shachaf · Alon Brutzkus · Amir Globerson -
2021 Poster: On Calibration and Out-of-Domain Generalization »
Yoav Wald · Amir Feder · Daniel Greenfeld · Uri Shalit -
2019 Poster: Globally Optimal Learning for Structured Elliptical Losses »
Yoav Wald · Nofar Noy · Gal Elidan · Ami Wiesel