Timezone: »
Semi-supervised learning methods using Generative adversarial networks (GANs) have shown promising empirical success recently. Most of these methods use a shared discriminator/classifier which discriminates real examples from fake while also predicting the class label. Motivated by the ability of the GANs generator to capture the data manifold well, we propose to estimate the tangent space to the data manifold using GANs and employ it to inject invariances into the classifier. In the process, we propose enhancements over existing methods for learning the inverse mapping (i.e., the encoder) which greatly improves in terms of semantic similarity of the reconstructed sample with the input sample. We observe considerable empirical gains in semi-supervised learning over baselines, particularly in the cases when the number of labeled examples is low. We also provide insights into how fake examples influence the semi-supervised learning procedure.
Author Information
Abhishek Kumar (Google)
Prasanna Sattigeri (IBM Research)
Tom Fletcher (University of Utah)
More from the Same Authors
-
2021 : VAEs meet Diffusion Models: Efficient and High-Fidelity Generation »
Kushagra Pandey · Avideep Mukherjee · Piyush Rai · Abhishek Kumar -
2022 : Fast Implicit Constrained Optimization of Non-decomposable Objectives for Deep Networks »
Yatong Chen · Abhishek Kumar · Yang Liu · Ehsan Amid -
2022 : Physics-Constrained Deep Learning for Climate Downscaling »
Paula Harder · Qidong Yang · Venkatesh Ramesh · Prasanna Sattigeri · Alex Hernandez-Garcia · Campbell Watson · Daniela Szwarcman · David Rolnick -
2022 : Generating physically-consistent high-resolution climate data with hard-constrained neural networks »
Paula Harder · Qidong Yang · Venkatesh Ramesh · Prasanna Sattigeri · Alex Hernandez-Garcia · Campbell Watson · Daniela Szwarcman · David Rolnick -
2022 : Dropout Disagreement: A Recipe for Group Robustness with Fewer Annotations »
Tyler LaBonte · Abhishek Kumar · Vidya Muthukumar -
2022 Poster: Fair Infinitesimal Jackknife: Mitigating the Influence of Biased Training Data Points Without Refitting »
Prasanna Sattigeri · Soumya Ghosh · Inkit Padhi · Pierre Dognin · Kush Varshney -
2022 Expo Talk Panel: Uncertainty quantification for fair and transparent AI-assisted decision-making »
Prasanna Sattigeri -
2021 : VAEs meet Diffusion Models: Efficient and High-Fidelity Generation »
Kushagra Pandey · Avideep Mukherjee · Piyush Rai · Abhishek Kumar -
2021 Poster: Scalable Intervention Target Estimation in Linear Models »
Burak Varici · Karthikeyan Shanmugam · Prasanna Sattigeri · Ali Tajer -
2020 Poster: Optimizing Mode Connectivity via Neuron Alignment »
Norman J Tatro · Pin-Yu Chen · Payel Das · Igor Melnyk · Prasanna Sattigeri · Rongjie Lai -
2019 : Coffee Break and Poster Session »
Rameswar Panda · Prasanna Sattigeri · Kush Varshney · Karthikeyan Natesan Ramamurthy · Harvineet Singh · Vishwali Mhasawade · Shalmali Joshi · Laleh Seyyed-Kalantari · Matthew McDermott · Gal Yona · James Atwood · Hansa Srinivasan · Yonatan Halpern · D. Sculley · Behrouz Babaki · Margarida Carvalho · Josie Williams · Narges Razavian · Haoran Zhang · Amy Lu · Irene Y Chen · Xiaojie Mao · Angela Zhou · Nathan Kallus -
2019 : Poster session »
Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak -
2019 Poster: Learning New Tricks From Old Dogs: Multi-Source Transfer Learning From Pre-Trained Networks »
Joshua Lee · Prasanna Sattigeri · Gregory Wornell -
2018 Poster: Delta-encoder: an effective sample synthesis method for few-shot object recognition »
Eli Schwartz · Leonid Karlinsky · Joseph Shtok · Sivan Harary · Mattias Marder · Abhishek Kumar · Rogerio Feris · Raja Giryes · Alex Bronstein -
2018 Demonstration: PatentAI: IP Infringement Detection with Enhanced Paraphrase Identification »
Youssef Drissi · Karthikeyan Natesan Ramamurthy · Prasanna Sattigeri -
2018 Spotlight: Delta-encoder: an effective sample synthesis method for few-shot object recognition »
Eli Schwartz · Leonid Karlinsky · Joseph Shtok · Sivan Harary · Mattias Marder · Abhishek Kumar · Rogerio Feris · Raja Giryes · Alex Bronstein -
2018 Poster: Co-regularized Alignment for Unsupervised Domain Adaptation »
Abhishek Kumar · Prasanna Sattigeri · Kahini Wadhawan · Leonid Karlinsky · Rogerio Feris · Bill Freeman · Gregory Wornell -
2017 : Poster session + Coffee break »
Mikael Kågebäck · Igor Melnyk · Amir-Hossein Karimi · Gino Brunner · Ershad Banijamali · Chris Donahue · Jake Zhao · Giambattista Parascandolo · Valentin Thomas · Abhishek Kumar · Chris Burgess · Amanda Nilsson · Maria Larsson · Cian Eastwood · Momchil Peychev -
2014 Workshop: Riemannian geometry in machine learning, statistics and computer vision »
Minh Ha Quang · Vikas Sindhwani · Vittorio Murino · Michael Betancourt · Tom Fletcher · Richard I Hartley · Anuj Srivastava · Bart Vandereycken -
2013 Poster: Probabilistic Principal Geodesic Analysis »
Miaomiao Zhang · Tom Fletcher -
2012 Poster: Simultaneously Leveraging Output and Task Structures for Multiple-Output Regression »
Piyush Rai · Abhishek Kumar · Hal Daumé III -
2011 Poster: Co-regularized Multi-view Spectral Clustering »
Abhishek Kumar · Piyush Rai · Hal Daumé III -
2010 Poster: Co-regularization Based Semi-supervised Domain Adaptation »
Hal Daumé III · Abhishek Kumar · Avishek Saha