Timezone: »

Task-based End-to-end Model Learning in Stochastic Optimization
Priya Donti · J. Zico Kolter · Brandon Amos

Mon Dec 04 06:30 PM -- 10:30 PM (PST) @ Pacific Ballroom #205

With the increasing popularity of machine learning techniques, it has become common to see prediction algorithms operating within some larger process. However, the criteria by which we train these algorithms often differ from the ultimate criteria on which we evaluate them. This paper proposes an end-to-end approach for learning probabilistic machine learning models in a manner that directly captures the ultimate task-based objective for which they will be used, within the context of stochastic programming. We present three experimental evaluations of the proposed approach: a classical inventory stock problem, a real-world electrical grid scheduling task, and a real-world energy storage arbitrage task. We show that the proposed approach can outperform both traditional modeling and purely black-box policy optimization approaches in these applications.

Author Information

Priya Donti (Carnegie Mellon University)
J. Zico Kolter (Carnegie Mellon University / Bosch Center for AI)

Zico Kolter is an Assistant Professor in the School of Computer Science at Carnegie Mellon University, and also serves as Chief Scientist of AI Research for the Bosch Center for Artificial Intelligence. His work focuses on the intersection of machine learning and optimization, with a large focus on developing more robust, explainable, and rigorous methods in deep learning. In addition, he has worked on a number of application areas, highlighted by work on sustainability and smart energy systems. He is the recipient of the DARPA Young Faculty Award, and best paper awards at KDD, IJCAI, and PESGM.

Brandon Amos (Carnegie Mellon University)

More from the Same Authors