Timezone: »
Few prior works study deep learning on point sets. PointNet is a pioneer in this direction. However, by design PointNet does not capture local structures induced by the metric space points live in, limiting its ability to recognize fine-grained patterns and generalizability to complex scenes. In this work, we introduce a hierarchical neural network that applies PointNet recursively on a nested partitioning of the input point set. By exploiting metric space distances, our network is able to learn local features with increasing contextual scales. With further observation that point sets are usually sampled with varying densities, which results in greatly decreased performance for networks trained on uniform densities, we propose novel set learning layers to adaptively combine features from multiple scales. Experiments show that our network called PointNet++ is able to learn deep point set features efficiently and robustly. In particular, results significantly better than state-of-the-art have been obtained on challenging benchmarks of 3D point clouds.
Author Information
Charles Ruizhongtai Qi (Stanford University)
Charles Ruizhongtai Qi is currently a PhD student at Stanford University. He is a member in Geometric Computing Group and Artificial Intelligence Lab. His research focuses on computer vision and machine learning. Specifically he works on connecting 2D images and 3D shapes as well as 3D deep learning for semantic understanding. Prior to joining Stanford, he got his bachelor degree in Electronic Engineering from Tsinghua University in 2013, with an outstanding graduate award. He has also been an exchange student in Aalto University, Helsinki during 2011 autumn. During 2016 summer, he was a software engineer intern at Google's self-driving car team.
Li Yi (Stanford University)
Hao Su (Stanford)
Leonidas Guibas (stanford.edu)
More from the Same Authors
-
2021 : ManiSkill: Generalizable Manipulation Skill Benchmark with Large-Scale Demonstrations »
Tongzhou Mu · Zhan Ling · Fanbo Xiang · Derek Yang · Xuanlin Li · Stone Tao · Zhiao Huang · Zhiwei Jia · Hao Su -
2021 : From One Hand to Multiple Hands: Imitation Learning for Dexterous Manipulation from Single-Camera Teleoperation »
Yuzhe Qin · Hao Su · Xiaolong Wang -
2022 : Breaking the Symmetry: Resolving Symmetry Ambiguities in Equivariant Neural Networks »
Sidhika Balachandar · Adrien Poulenard · Congyue Deng · Leonidas Guibas -
2023 Poster: NeRF Revisited: Fixing Quadrature Instability in Volume Rendering »
Mikaela Angelina Uy · Guandao Yang · Kiyohiro Nakayama · Leonidas Guibas · Ke Li -
2023 Poster: NAP: Neural 3D Articulation Prior »
Jiahui Lei · Congyue Deng · William B Shen · Leonidas Guibas · Kostas Daniilidis -
2023 Poster: Banana: Banach Fixed-Point Network for Pointcloud Segmentation with Inter-Part Equivariance »
Congyue Deng · Jiahui Lei · William B Shen · Kostas Daniilidis · Leonidas Guibas -
2022 Poster: NeuForm: Adaptive Overfitting for Neural Shape Editing »
Connor Lin · Niloy Mitra · Gordon Wetzstein · Leonidas Guibas · Paul Guerrero -
2022 Poster: Object Scene Representation Transformer »
Mehdi S. M. Sajjadi · Daniel Duckworth · Aravindh Mahendran · Sjoerd van Steenkiste · Filip Pavetic · Mario Lucic · Leonidas Guibas · Klaus Greff · Thomas Kipf -
2021 Poster: Stabilizing Deep Q-Learning with ConvNets and Vision Transformers under Data Augmentation »
Nicklas Hansen · Hao Su · Xiaolong Wang -
2021 Poster: Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks »
Tolga Birdal · Aaron Lou · Leonidas Guibas · Umut Simsekli -
2021 Poster: PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning »
Yining Hong · Li Yi · Josh Tenenbaum · Antonio Torralba · Chuang Gan -
2021 Poster: Leveraging SE(3) Equivariance for Self-supervised Category-Level Object Pose Estimation from Point Clouds »
Xiaolong Li · Yijia Weng · Li Yi · Leonidas Guibas · A. Abbott · Shuran Song · He Wang -
2021 Poster: Particle Cloud Generation with Message Passing Generative Adversarial Networks »
Raghav Kansal · Javier Duarte · Hao Su · Breno Orzari · Thiago Tomei · Maurizio Pierini · Mary Touranakou · jean-roch vlimant · Dimitrios Gunopulos -
2021 Poster: SketchGen: Generating Constrained CAD Sketches »
Wamiq Para · Shariq Bhat · Paul Guerrero · Tom Kelly · Niloy Mitra · Leonidas Guibas · Peter Wonka -
2020 : QA: Leonidas J. Guibas »
Leonidas Guibas -
2020 : Invited Talk: Leonidas J. Guibas »
Leonidas Guibas -
2020 Poster: Generative 3D Part Assembly via Dynamic Graph Learning »
jialei huang · Guanqi Zhan · Qingnan Fan · Kaichun Mo · Lin Shao · Baoquan Chen · Leonidas Guibas · Hao Dong -
2020 Poster: CaSPR: Learning Canonical Spatiotemporal Point Cloud Representations »
Davis Rempe · Tolga Birdal · Yongheng Zhao · Zan Gojcic · Srinath Sridhar · Leonidas Guibas -
2020 Poster: ShapeFlow: Learnable Deformation Flows Among 3D Shapes »
Chiyu Jiang · Jingwei Huang · Andrea Tagliasacchi · Leonidas Guibas -
2020 Spotlight: ShapeFlow: Learnable Deformation Flows Among 3D Shapes »
Chiyu Jiang · Jingwei Huang · Andrea Tagliasacchi · Leonidas Guibas -
2020 Spotlight: CaSPR: Learning Canonical Spatiotemporal Point Cloud Representations »
Davis Rempe · Tolga Birdal · Yongheng Zhao · Zan Gojcic · Srinath Sridhar · Leonidas Guibas -
2019 Poster: Multiview Aggregation for Learning Category-Specific Shape Reconstruction »
Srinath Sridhar · Davis Rempe · Julien Valentin · Bouaziz Sofien · Leonidas Guibas -
2019 Poster: A Condition Number for Joint Optimization of Cycle-Consistent Networks »
Leonidas Guibas · Qixing Huang · Zhenxiao Liang -
2019 Spotlight: A Condition Number for Joint Optimization of Cycle-Consistent Networks »
Leonidas Guibas · Qixing Huang · Zhenxiao Liang -
2018 Poster: Deep Functional Dictionaries: Learning Consistent Semantic Structures on 3D Models from Functions »
Minhyuk Sung · Hao Su · Ronald Yu · Leonidas Guibas -
2016 Poster: FPNN: Field Probing Neural Networks for 3D Data »
Yangyan Li · Soeren Pirk · Hao Su · Charles R Qi · Leonidas Guibas -
2015 Poster: Deep Knowledge Tracing »
Chris Piech · Jonathan Bassen · Jonathan Huang · Surya Ganguli · Mehran Sahami · Leonidas Guibas · Jascha Sohl-Dickstein -
2013 Poster: Wavelets on Graphs via Deep Learning »
Raif Rustamov · Leonidas Guibas -
2013 Demonstration: Codewebs: a Pedagogical Search Engine for Code Submissions to a MOOC »
Jonathan Huang · Chris Piech · Andy Nguyen · Leonidas Guibas -
2007 Oral: Efficient Inference forDistributions on Permutations »
Jonathan Huang · Carlos Guestrin · Leonidas Guibas -
2007 Poster: Efficient Inference forDistributions on Permutations »
Jonathan Huang · Carlos Guestrin · Leonidas Guibas