Timezone: »
Poster
GibbsNet: Iterative Adversarial Inference for Deep Graphical Models
Alex Lamb · R Devon Hjelm · Yaroslav Ganin · Joseph Paul Cohen · Aaron Courville · Yoshua Bengio
Directed latent variable models that formulate the joint distribution as $p(x,z) = p(z) p(x \mid z)$ have the advantage of fast and exact sampling. However, these models have the weakness of needing to specify $p(z)$, often with a simple fixed prior that limits the expressiveness of the model. Undirected latent variable models discard the requirement that $p(z)$ be specified with a prior, yet sampling from them generally requires an iterative procedure such as blocked Gibbs-sampling that may require many steps to draw samples from the joint distribution $p(x, z)$. We propose a novel approach to learning the joint distribution between the data and a latent code which uses an adversarially learned iterative procedure to gradually refine the joint distribution, $p(x, z)$, to better match with the data distribution on each step. GibbsNet is the best of both worlds both in theory and in practice. Achieving the speed and simplicity of a directed latent variable model, it is guaranteed (assuming the adversarial game reaches the virtual training criteria global minimum) to produce samples from $p(x, z)$ with only a few sampling iterations. Achieving the expressiveness and flexibility of an undirected latent variable model, GibbsNet does away with the need for an explicit $p(z)$ and has the ability to do attribute prediction, class-conditional generation, and joint image-attribute modeling in a single model which is not trained for any of these specific tasks. We show empirically that GibbsNet is able to learn a more complex $p(z)$ and show that this leads to improved inpainting and iterative refinement of $p(x, z)$ for dozens of steps and stable generation without collapse for thousands of steps, despite being trained on only a few steps.
Author Information
Alex Lamb (UMontreal (MILA))
R Devon Hjelm (MSR / MILA)
Yaroslav Ganin (DeepMind)
Joseph Paul Cohen (MILA ShortScience.org)
Joseph Paul Cohen is a researcher and pragmatic engineer. He currently focuses on the challenges in deploying AI tools in medicine specifically computer vision and genomics. He maintains many open source projects including Chester the AI radiology assistant, TorchXRayVision, and BlindTool – a mobile vision aid app. He is the director of the Institute for Reproducible Research, a US non-profit which operates ShortScience.org and Academic Torrents.
Aaron Courville (U. Montreal)
Yoshua Bengio (U. Montreal)
More from the Same Authors
-
2021 Spotlight: A Variational Perspective on Diffusion-Based Generative Models and Score Matching »
Chin-Wei Huang · Jae Hyun Lim · Aaron Courville -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : Behavior Predictive Representations for Generalization in Reinforcement Learning »
Siddhant Agarwal · Aaron Courville · Rishabh Agarwal -
2021 : MIDI-DDSP: Hierarchical Modeling of Music for Detailed Control »
Yusong Wu · Ethan Manilow · Kyle Kastner · Tim Cooijmans · Aaron Courville · Cheng-Zhi Anna Huang · Jesse Engel -
2021 : Multi-Domain Balanced Sampling Improves Out-of-Distribution Generalization of Chest X-ray Pathology Prediction Models »
Enoch Tetteh · David Krueger · Joseph Paul Cohen · Yoshua Bengio -
2022 : Datasets That Are Not: Evolving Novelty Through Sparsity and Iterated Learning »
Yusong Wu · Kyle Kastner · Tim Cooijmans · Cheng-Zhi Anna Huang · Aaron Courville -
2022 : Unleashing The Potential of Data Sharing in Ensemble Deep Reinforcement Learning »
Zhixuan Lin · Pierluca D'Oro · Evgenii Nikishin · Aaron Courville -
2022 : Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier »
Pierluca D'Oro · Max Schwarzer · Evgenii Nikishin · Pierre-Luc Bacon · Marc Bellemare · Aaron Courville -
2022 : Investigating Multi-task Pretraining and Generalization in Reinforcement Learning »
Adrien Ali Taiga · Rishabh Agarwal · Jesse Farebrother · Aaron Courville · Marc Bellemare -
2023 Poster: Let the Flows Tell: Solving Graph Combinatorial Problems with GFlowNets »
Dinghuai Zhang · Hanjun Dai · Nikolay Malkin · Aaron Courville · Yoshua Bengio · Ling Pan -
2023 Poster: Versatile Energy-Based Probabilistic Models for High Energy Physics »
Taoli Cheng · Aaron Courville -
2023 Poster: Improving Systematic Generalization using Iterated Learning and Simplicial Embeddings »
Yi Ren · Samuel Lavoie · Michael Galkin · Danica J. Sutherland · Aaron Courville -
2023 Poster: Double Gumbel Q-Learning »
David Yu-Tung Hui · Aaron Courville · Pierre-Luc Bacon -
2023 Poster: Language Model Alignment with Elastic Reset »
Michael Noukhovitch · Samuel Lavoie · Florian Strub · Aaron Courville -
2023 Poster: Group Robust Classification Without Any Group Information »
Christos Tsirigotis · Joao Monteiro · Pau Rodriguez · David Vazquez · Aaron Courville -
2022 Poster: Riemannian Diffusion Models »
Chin-Wei Huang · Milad Aghajohari · Joey Bose · Prakash Panangaden · Aaron Courville -
2022 Poster: Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress »
Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare -
2021 : Behavior Predictive Representations for Generalization in Reinforcement Learning »
Siddhant Agarwal · Aaron Courville · Rishabh Agarwal -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization Q&A »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 Poster: Gradient Starvation: A Learning Proclivity in Neural Networks »
Mohammad Pezeshki · Oumar Kaba · Yoshua Bengio · Aaron Courville · Doina Precup · Guillaume Lajoie -
2021 Poster: Pretraining Representations for Data-Efficient Reinforcement Learning »
Max Schwarzer · Nitarshan Rajkumar · Michael Noukhovitch · Ankesh Anand · Laurent Charlin · R Devon Hjelm · Philip Bachman · Aaron Courville -
2021 Poster: A Variational Perspective on Diffusion-Based Generative Models and Score Matching »
Chin-Wei Huang · Jae Hyun Lim · Aaron Courville -
2021 Oral: Deep Reinforcement Learning at the Edge of the Statistical Precipice »
Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare -
2021 Poster: Deep Reinforcement Learning at the Edge of the Statistical Precipice »
Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare -
2021 Poster: Computer-Aided Design as Language »
Yaroslav Ganin · Sergey Bartunov · Yujia Li · Ethan Keller · Stefano Saliceti -
2020 Workshop: AI for Earth Sciences »
Surya Karthik Mukkavilli · Johanna Hansen · Natasha Dudek · Tom Beucler · Kelly Kochanski · Mayur Mudigonda · Karthik Kashinath · Amy McGovern · Paul D Miller · Chad Frischmann · Pierre Gentine · Gregory Dudek · Aaron Courville · Daniel Kammen · Vipin Kumar -
2020 Poster: Unsupervised Learning of Dense Visual Representations »
Pedro O. Pinheiro · Amjad Almahairi · Ryan Benmalek · Florian Golemo · Aaron Courville -
2019 : Climate Change: A Grand Challenge for ML »
Yoshua Bengio · Carla Gomes · Andrew Ng · Jeff Dean · Lester Mackey -
2019 Poster: Ordered Memory »
Yikang Shen · Shawn Tan · Arian Hosseini · Zhouhan Lin · Alessandro Sordoni · Aaron Courville -
2019 Poster: How to Initialize your Network? Robust Initialization for WeightNorm & ResNets »
Devansh Arpit · Víctor Campos · Yoshua Bengio -
2019 Poster: Variational Temporal Abstraction »
Taesup Kim · Sungjin Ahn · Yoshua Bengio -
2019 Poster: MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis »
Kundan Kumar · Rithesh Kumar · Thibault de Boissiere · Lucas Gestin · Wei Zhen Teoh · Jose Sotelo · Alexandre de Brébisson · Yoshua Bengio · Aaron Courville -
2019 Poster: No-Press Diplomacy: Modeling Multi-Agent Gameplay »
Philip Paquette · Yuchen Lu · SETON STEVEN BOCCO · Max Smith · Satya O.-G. · Jonathan K. Kummerfeld · Joelle Pineau · Satinder Singh · Aaron Courville -
2019 Poster: On Adversarial Mixup Resynthesis »
Christopher Beckham · Sina Honari · Alex Lamb · Vikas Verma · Farnoosh Ghadiri · R Devon Hjelm · Yoshua Bengio · Chris Pal -
2018 : Poster Session 2 »
Katy Gero · Le Zhou · Simiao Yu · Zhengyan Gao · Chris Donahue · Juncheng Li · TAEGYUN KWON · Patrick Hutchings · Charles Martin · Eunsu Kang · Asanobu Kitamoto · Zheng Jiang · Syuan-Cheng Sun · Philipp Roland Schmitt · Maria Attarian · Alex Lamb · Tarin CLANUWAT · Mauro Martino · Holly Grimm · Nikolay Jetchev -
2018 : Yaroslav Ganin »
Yaroslav Ganin -
2018 : Opening remarks »
Yoshua Bengio -
2018 Workshop: AI for social good »
Margaux Luck · Tristan Sylvain · Joseph Paul Cohen · Arsene Fansi Tchango · Valentine Goddard · Aurelie Helouis · Yoshua Bengio · Sam Greydanus · Cody Wild · Taras Kucherenko · Arya Farahi · Jonathan Penn · Sean McGregor · Mark Crowley · Abhishek Gupta · Kenny Chen · Myriam Côté · Rediet Abebe -
2018 Workshop: Visually grounded interaction and language »
Florian Strub · Harm de Vries · Erik Wijmans · Samyak Datta · Ethan Perez · Mateusz Malinowski · Stefan Lee · Peter Anderson · Aaron Courville · Jeremie MARY · Dhruv Batra · Devi Parikh · Olivier Pietquin · Chiori HORI · Tim Marks · Anoop Cherian -
2018 Poster: Image-to-image translation for cross-domain disentanglement »
Abel Gonzalez-Garcia · Joost van de Weijer · Yoshua Bengio -
2018 Poster: MetaGAN: An Adversarial Approach to Few-Shot Learning »
Ruixiang ZHANG · Tong Che · Zoubin Ghahramani · Yoshua Bengio · Yangqiu Song -
2018 Poster: Improving Explorability in Variational Inference with Annealed Variational Objectives »
Chin-Wei Huang · Shawn Tan · Alexandre Lacoste · Aaron Courville -
2018 Poster: Bayesian Model-Agnostic Meta-Learning »
Jaesik Yoon · Taesup Kim · Ousmane Dia · Sungwoong Kim · Yoshua Bengio · Sungjin Ahn -
2018 Poster: Sparse Attentive Backtracking: Temporal Credit Assignment Through Reminding »
Nan Rosemary Ke · Anirudh Goyal · Olexa Bilaniuk · Jonathan Binas · Michael Mozer · Chris Pal · Yoshua Bengio -
2018 Spotlight: Sparse Attentive Backtracking: Temporal Credit Assignment Through Reminding »
Nan Rosemary Ke · Anirudh Goyal · Olexa Bilaniuk · Jonathan Binas · Michael Mozer · Chris Pal · Yoshua Bengio -
2018 Spotlight: Bayesian Model-Agnostic Meta-Learning »
Jaesik Yoon · Taesup Kim · Ousmane Dia · Sungwoong Kim · Yoshua Bengio · Sungjin Ahn -
2018 Poster: Towards Text Generation with Adversarially Learned Neural Outlines »
Sandeep Subramanian · Sai Rajeswar Mudumba · Alessandro Sordoni · Adam Trischler · Aaron Courville · Chris Pal -
2018 Poster: Dendritic cortical microcircuits approximate the backpropagation algorithm »
João Sacramento · Rui Ponte Costa · Yoshua Bengio · Walter Senn -
2018 Oral: Dendritic cortical microcircuits approximate the backpropagation algorithm »
João Sacramento · Rui Ponte Costa · Yoshua Bengio · Walter Senn -
2017 : Yoshua Bengio »
Yoshua Bengio -
2017 : More Steps towards Biologically Plausible Backprop »
Yoshua Bengio -
2017 : A3T: Adversarially Augmented Adversarial Training »
Aristide Baratin · Simon Lacoste-Julien · Yoshua Bengio · Akram Erraqabi -
2017 : Competition III: The Conversational Intelligence Challenge »
Mikhail Burtsev · Ryan Lowe · Iulian Vlad Serban · Yoshua Bengio · Alexander Rudnicky · Alan W Black · Shrimai Prabhumoye · Artem Rodichev · Nikita Smetanin · Denis Fedorenko · CheongAn Lee · EUNMI HONG · Hwaran Lee · Geonmin Kim · Nicolas Gontier · Atsushi Saito · Andrey Gershfeld · Artem Burachenok -
2017 Workshop: Visually grounded interaction and language »
Florian Strub · Harm de Vries · Abhishek Das · Satwik Kottur · Stefan Lee · Mateusz Malinowski · Olivier Pietquin · Devi Parikh · Dhruv Batra · Aaron Courville · Jeremie Mary -
2017 Poster: Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net »
Anirudh Goyal · Nan Rosemary Ke · Surya Ganguli · Yoshua Bengio -
2017 Poster: Improved Training of Wasserstein GANs »
Ishaan Gulrajani · Faruk Ahmed · Martin Arjovsky · Vincent Dumoulin · Aaron Courville -
2017 Demonstration: A Deep Reinforcement Learning Chatbot »
Iulian Vlad Serban · Chinnadhurai Sankar · Mathieu Germain · Saizheng Zhang · Zhouhan Lin · Sandeep Subramanian · Taesup Kim · Michael Pieper · Sarath Chandar · Nan Rosemary Ke · Sai Rajeswar Mudumba · Alexandre de Brébisson · Jose Sotelo · Dendi A Suhubdy · Vincent Michalski · Joelle Pineau · Yoshua Bengio -
2017 Poster: Modulating early visual processing by language »
Harm de Vries · Florian Strub · Jeremie Mary · Hugo Larochelle · Olivier Pietquin · Aaron Courville -
2017 Spotlight: Modulating early visual processing by language »
Harm de Vries · Florian Strub · Jeremie Mary · Hugo Larochelle · Olivier Pietquin · Aaron Courville -
2017 Poster: Plan, Attend, Generate: Planning for Sequence-to-Sequence Models »
Caglar Gulcehre · Francis Dutil · Adam Trischler · Yoshua Bengio -
2017 Poster: Z-Forcing: Training Stochastic Recurrent Networks »
Anirudh Goyal · Alessandro Sordoni · Marc-Alexandre Côté · Nan Rosemary Ke · Yoshua Bengio -
2016 : Discussion panel »
Ian Goodfellow · Soumith Chintala · Arthur Gretton · Sebastian Nowozin · Aaron Courville · Yann LeCun · Emily Denton -
2016 : Adversarially Learned Inference (ALI) and BiGANs »
Aaron Courville -
2016 Poster: Professor Forcing: A New Algorithm for Training Recurrent Networks »
Alex M Lamb · Anirudh Goyal · Ying Zhang · Saizheng Zhang · Aaron Courville · Yoshua Bengio -
2016 Poster: Iterative Refinement of the Approximate Posterior for Directed Belief Networks »
R Devon Hjelm · Russ Salakhutdinov · Kyunghyun Cho · Nebojsa Jojic · Vince Calhoun · Junyoung Chung -
2015 : Introduction »
Aaron Courville -
2015 Workshop: Multimodal Machine Learning »
Louis-Philippe Morency · Tadas Baltrusaitis · Aaron Courville · Kyunghyun Cho -
2015 Poster: A Recurrent Latent Variable Model for Sequential Data »
Junyoung Chung · Kyle Kastner · Laurent Dinh · Kratarth Goel · Aaron Courville · Yoshua Bengio -
2014 Poster: Generative Adversarial Nets »
Ian Goodfellow · Jean Pouget-Abadie · Mehdi Mirza · Bing Xu · David Warde-Farley · Sherjil Ozair · Aaron Courville · Yoshua Bengio -
2013 Poster: Multi-Prediction Deep Boltzmann Machines »
Ian Goodfellow · Mehdi Mirza · Aaron Courville · Yoshua Bengio -
2011 Poster: On Tracking The Partition Function »
Guillaume Desjardins · Aaron Courville · Yoshua Bengio -
2009 Poster: An Infinite Factor Model Hierarchy Via a Noisy-Or Mechanism »
Aaron Courville · Douglas Eck · Yoshua Bengio -
2009 Session: Oral Session 3: Deep Learning and Network Models »
Aaron Courville -
2008 Session: Oral session 11: Attention and Mind »
Aaron Courville -
2007 Spotlight: The rat as particle filter »
Nathaniel D Daw · Aaron Courville -
2007 Poster: The rat as particle filter »
Nathaniel D Daw · Aaron Courville