Timezone: »
Gradient matching is a promising tool for learning parameters and state dynamics of ordinary differential equations. It is a grid free inference approach, which, for fully observable systems is at times competitive with numerical integration. However, for many real-world applications, only sparse observations are available or even unobserved variables are included in the model description. In these cases most gradient matching methods are difficult to apply or simply do not provide satisfactory results. That is why, despite the high computational cost, numerical integration is still the gold standard in many applications. Using an existing gradient matching approach, we propose a scalable variational inference framework which can infer states and parameters simultaneously, offers computational speedups, improved accuracy and works well even under model misspecifications in a partially observable system.
Author Information
Nico S Gorbach (Swiss Federal Institute of Technology Zurich (ETHZ))
Stefan Bauer (ETH Zürich)
Joachim M Buhmann (ETH Zurich)
More from the Same Authors
-
2022 Poster: Learning to Drop Out: An Adversarial Approach to Training Sequence VAEs »
Djordje Miladinovic · Kumar Shridhar · Kushal Jain · Max Paulus · Joachim M Buhmann · Carl Allen -
2022 Poster: Learning Long-Term Crop Management Strategies with CyclesGym »
Matteo Turchetta · Luca Corinzia · Scott Sussex · Amanda Burton · Juan Herrera · Ioannis Athanasiadis · Joachim M Buhmann · Andreas Krause -
2017 Poster: Efficient and Flexible Inference for Stochastic Systems »
Stefan Bauer · Nico S Gorbach · Djordje Miladinovic · Joachim M Buhmann -
2017 Poster: Non-monotone Continuous DR-submodular Maximization: Structure and Algorithms »
Yatao Bian · Kfir Levy · Andreas Krause · Joachim M Buhmann -
2016 Poster: Scalable Adaptive Stochastic Optimization Using Random Projections »
Gabriel Krummenacher · Brian McWilliams · Yannic Kilcher · Joachim M Buhmann · Nicolai Meinshausen -
2014 Poster: Fast and Robust Least Squares Estimation in Corrupted Linear Models »
Brian McWilliams · Gabriel Krummenacher · Mario Lucic · Joachim M Buhmann -
2014 Spotlight: Fast and Robust Least Squares Estimation in Corrupted Linear Models »
Brian McWilliams · Gabriel Krummenacher · Mario Lucic · Joachim M Buhmann -
2013 Poster: Correlated random features for fast semi-supervised learning »
Brian McWilliams · David Balduzzi · Joachim M Buhmann -
2011 Workshop: Philosophy and Machine Learning »
Marcello Pelillo · Joachim M Buhmann · Tiberio Caetano · Bernhard Schölkopf · Larry Wasserman -
2006 Poster: Denoising and Dimension Reduction in Feature Space »
Mikio L Braun · Joachim M Buhmann · Klaus-Robert Müller