Timezone: »
Poster
Non-Stationary Spectral Kernels
Sami Remes · Markus Heinonen · Samuel Kaski
We propose non-stationary spectral kernels for Gaussian process regression by modelling the spectral density of a non-stationary kernel function as a mixture of input-dependent Gaussian process frequency density surfaces. We solve the generalised Fourier transform with such a model, and present a family of non-stationary and non-monotonic kernels that can learn input-dependent and potentially long-range, non-monotonic covariances between inputs. We derive efficient inference using model whitening and marginalized posterior, and show with case studies that these kernels are necessary when modelling even rather simple time series, image or geospatial data with non-stationary characteristics.
Author Information
Sami Remes (Aalto University)
Markus Heinonen (Aalto University)
Samuel Kaski (Aalto University)
More from the Same Authors
-
2021 Poster: De-randomizing MCMC dynamics with the diffusion Stein operator »
Zheyang Shen · Markus Heinonen · Samuel Kaski -
2020 Poster: Rethinking pooling in graph neural networks »
Diego Mesquita · Amauri Souza · Samuel Kaski -
2019 Poster: Machine Teaching of Active Sequential Learners »
Tomi Peltola · Mustafa Mert Çelikok · Pedram Daee · Samuel Kaski -
2019 Poster: ODE2VAE: Deep generative second order ODEs with Bayesian neural networks »
Cagatay Yildiz · Markus Heinonen · Harri Lahdesmaki -
2017 Poster: Differentially private Bayesian learning on distributed data »
Mikko Heikkilä · Eemil Lagerspetz · Samuel Kaski · Kana Shimizu · Sasu Tarkoma · Antti Honkela -
2014 Workshop: Machine Learning in Computational Biology »
Oliver Stegle · Sara Mostafavi · Anna Goldenberg · Su-In Lee · Michael Leung · Anshul Kundaje · Mark B Gerstein · Martin Renqiang Min · Hannes Bretschneider · Francesco Paolo Casale · Loïc Schwaller · Amit G Deshwar · Benjamin A Logsdon · Yuanyang Zhang · Ali Punjani · Derek C Aguiar · Samuel Kaski