Timezone: »
We analyze sources of error in prediction market forecasts in order to bound the difference between a security's price and the ground truth it estimates. We consider cost-function-based prediction markets in which an automated market maker adjusts security prices according to the history of trade. We decompose the forecasting error into three components: sampling error, arising because traders only possess noisy estimates of ground truth; market-maker bias, resulting from the use of a particular market maker (i.e., cost function) to facilitate trade; and convergence error, arising because, at any point in time, market prices may still be in flux. Our goal is to make explicit the tradeoffs between these error components, influenced by design decisions such as the functional form of the cost function and the amount of liquidity in the market. We consider a specific model in which traders have exponential utility and exponential-family beliefs representing noisy estimates of ground truth. In this setting, sampling error vanishes as the number of traders grows, but there is a tradeoff between the other two components. We provide both upper and lower bounds on market-maker bias and convergence error, and demonstrate via numerical simulations that these bounds are tight. Our results yield new insights into the question of how to set the market's liquidity parameter and into the forecasting benefits of enforcing coherent prices across securities.
Author Information
Miro Dudik (Microsoft Research)
Sebastien Lahaie (Google)
Ryan Rogers (University of Pennsylvania)
Jennifer Wortman Vaughan (Microsoft Research)

Jenn Wortman Vaughan is a Senior Principal Researcher at Microsoft Research, New York City. Her research background is in machine learning and algorithmic economics. She is especially interested in the interaction between people and AI, and has often studied this interaction in the context of prediction markets and other crowdsourcing systems. In recent years, she has turned her attention to human-centered approaches to transparency, interpretability, and fairness in machine learning as part of MSR's FATE group and co-chair of Microsoft’s Aether Working Group on Transparency. Jenn came to MSR in 2012 from UCLA, where she was an assistant professor in the computer science department. She completed her Ph.D. at the University of Pennsylvania in 2009, and subsequently spent a year as a Computing Innovation Fellow at Harvard. She is the recipient of Penn's 2009 Rubinoff dissertation award for innovative applications of computer technology, a National Science Foundation CAREER award, a Presidential Early Career Award for Scientists and Engineers (PECASE), and a handful of best paper awards. In her "spare" time, Jenn is involved in a variety of efforts to provide support for women in computer science; most notably, she co-founded the Annual Workshop for Women in Machine Learning, which has been held each year since 2006.
More from the Same Authors
-
2020 : Unifying Privacy Loss for Data Analytics »
Ryan Rogers -
2021 Spotlight: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2021 : GAM Changer: Editing Generalized Additive Models with Interactive Visualization »
Zijie Jay Wang · Harsha Nori · Duen Horng Chau · Jennifer Wortman Vaughan · Rich Caruana -
2022 : Generation Probabilities are Not Enough: Improving Error Highlighting for AI Code Suggestions »
Helena Vasconcelos · Gagan Bansal · Adam Fourney · Q.Vera Liao · Jennifer Wortman Vaughan -
2022 : Beyond Decision Recommendations: Stop Putting Machine Learning First and Design Human-Centered AI for Decision Support »
Zana Bucinca · Alexandra Chouldechova · Jennifer Wortman Vaughan · Krzysztof Z Gajos -
2023 Poster: A Unified Model and Dimension for Interactive Estimation »
Nataly Brukhim · Miro Dudik · Aldo Pacchiano · Robert Schapire -
2023 Poster: Adaptive Privacy Composition for Accuracy-first Mechanisms »
Ryan Rogers · Gennady Samorodnitsk · Steven Wu · Aaditya Ramdas -
2022 : Panel »
Meena Jagadeesan · Avrim Blum · Jon Kleinberg · Celestine Mendler-Dünner · Jennifer Wortman Vaughan · Chara Podimata -
2022 Poster: Brownian Noise Reduction: Maximizing Privacy Subject to Accuracy Constraints »
Justin Whitehouse · Aaditya Ramdas · Steven Wu · Ryan Rogers -
2022 Poster: Provably sample-efficient RL with side information about latent dynamics »
Yao Liu · Dipendra Misra · Miro Dudik · Robert Schapire -
2021 : Fairness:: Assessing Fairness in Practice: AI Teams’ Processes, Challenges, and Needs for Support »
Michael Madaio · Hariharan Subramonyam · Jennifer Wortman Vaughan -
2021 Poster: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2020 : Q & A and Panel Session with Tom Mitchell, Jenn Wortman Vaughan, Sanjoy Dasgupta, and Finale Doshi-Velez »
Tom Mitchell · Jennifer Wortman Vaughan · Sanjoy Dasgupta · Finale Doshi-Velez · Zachary Lipton -
2020 Session: Orals & Spotlights Track 20: Social/Adversarial Learning »
Steven Wu · Miro Dudik -
2020 Poster: Constrained episodic reinforcement learning in concave-convex and knapsack settings »
Kianté Brantley · Miro Dudik · Thodoris Lykouris · Sobhan Miryoosefi · Max Simchowitz · Aleksandrs Slivkins · Wen Sun -
2019 Poster: Practical Differentially Private Top-k Selection with Pay-what-you-get Composition »
David Durfee · Ryan Rogers -
2019 Spotlight: Practical Differentially Private Top-k Selection with Pay-what-you-get Composition »
David Durfee · Ryan Rogers -
2019 Poster: Reinforcement Learning with Convex Constraints »
Sobhan Miryoosefi · Kianté Brantley · Hal Daumé III · Miro Dudik · Robert Schapire -
2017 : The Unfair Externalities of Exploration »
Aleksandrs Slivkins · Jennifer Wortman Vaughan -
2017 : Poster spotlights »
Hiroshi Kuwajima · Masayuki Tanaka · Qingkai Liang · Matthieu Komorowski · Fanyu Que · Thalita F Drumond · Aniruddh Raghu · Leo Anthony Celi · Christina Göpfert · Andrew Ross · Sarah Tan · Rich Caruana · Yin Lou · Devinder Kumar · Graham Taylor · Forough Poursabzi-Sangdeh · Jennifer Wortman Vaughan · Hanna Wallach -
2017 Workshop: Learning in the Presence of Strategic Behavior »
Nika Haghtalab · Yishay Mansour · Tim Roughgarden · Vasilis Syrgkanis · Jennifer Wortman Vaughan -
2017 Poster: Off-policy evaluation for slate recommendation »
Adith Swaminathan · Akshay Krishnamurthy · Alekh Agarwal · Miro Dudik · John Langford · Damien Jose · Imed Zitouni -
2017 Oral: Off-policy evaluation for slate recommendation »
Adith Swaminathan · Akshay Krishnamurthy · Alekh Agarwal · Miro Dudik · John Langford · Damien Jose · Imed Zitouni -
2016 : Jennifer Wortman Vaughan: "The Communication Network Within the Crowd" »
Jennifer Wortman Vaughan -
2016 Poster: Contextual semibandits via supervised learning oracles »
Akshay Krishnamurthy · Alekh Agarwal · Miro Dudik -
2016 Tutorial: Crowdsourcing: Beyond Label Generation »
Jennifer Wortman Vaughan -
2014 Workshop: NIPS’14 Workshop on Crowdsourcing and Machine Learning »
David Parkes · Denny Zhou · Chien-Ju Ho · Nihar Bhadresh Shah · Adish Singla · Jared Heyman · Edwin Simpson · Andreas Krause · Rafael Frongillo · Jennifer Wortman Vaughan · Panagiotis Papadimitriou · Damien Peters -
2014 Workshop: OPT2014: Optimization for Machine Learning »
Zaid Harchaoui · Suvrit Sra · Alekh Agarwal · Martin Jaggi · Miro Dudik · Aaditya Ramdas · Jean Lasserre · Yoshua Bengio · Amir Beck -
2014 Workshop: NIPS Workshop on Transactional Machine Learning and E-Commerce »
David Parkes · David H Wolpert · Jennifer Wortman Vaughan · Jacob D Abernethy · Amos Storkey · Mark Reid · Ping Jin · Nihar Bhadresh Shah · Mehryar Mohri · Luis E Ortiz · Robin Hanson · Aaron Roth · Satyen Kale · Sebastien Lahaie -
2014 Session: Oral Session 9 »
Jennifer Wortman Vaughan -
2013 Workshop: Crowdsourcing: Theory, Algorithms and Applications »
Jennifer Wortman Vaughan · Greg Stoddard · Chien-Ju Ho · Adish Singla · Michael Bernstein · Devavrat Shah · Arpita Ghosh · Evgeniy Gabrilovich · Denny Zhou · Nikhil Devanur · Xi Chen · Alexander Ihler · Qiang Liu · Genevieve Patterson · Ashwinkumar Badanidiyuru Varadaraja · Hossein Azari Soufiani · Jacob Whitehill -
2011 Workshop: 2nd Workshop on Computational Social Science and the Wisdom of Crowds »
Winter Mason · Jennifer Wortman Vaughan · Hanna Wallach -
2011 Workshop: Relations between machine learning problems - an approach to unify the field »
Robert Williamson · John Langford · Ulrike von Luxburg · Mark Reid · Jennifer Wortman Vaughan -
2010 Workshop: Computational Social Science and the Wisdom of Crowds »
Jennifer Wortman Vaughan · Hanna Wallach -
2007 Spotlight: Privacy-Preserving Belief Propagation and Sampling »
Michael Kearns · Jinsong Tan · Jennifer Wortman Vaughan -
2007 Poster: Privacy-Preserving Belief Propagation and Sampling »
Michael Kearns · Jinsong Tan · Jennifer Wortman Vaughan -
2007 Poster: Learning Bounds for Domain Adaptation »
John Blitzer · Yacov Crammer · Alex Kulesza · Fernando Pereira · Jennifer Wortman Vaughan -
2006 Poster: Learning from Multiple Sources »
Yacov Crammer · Michael Kearns · Jennifer Wortman Vaughan