Timezone: »
Empirical risk minimization (ERM) is ubiquitous in machine learning and underlies most supervised learning methods. While there is a large body of work on algorithms for various ERM problems, the exact computational complexity of ERM is still not understood. We address this issue for multiple popular ERM problems including kernel SVMs, kernel ridge regression, and training the final layer of a neural network. In particular, we give conditional hardness results for these problems based on complexity-theoretic assumptions such as the Strong Exponential Time Hypothesis. Under these assumptions, we show that there are no algorithms that solve the aforementioned ERM problems to high accuracy in sub-quadratic time. We also give similar hardness results for computing the gradient of the empirical loss, which is the main computational burden in many non-convex learning tasks.
Author Information
Arturs Backurs (MIT)
Piotr Indyk (MIT)
Ludwig Schmidt (MIT)
More from the Same Authors
-
2022 Poster: Faster Linear Algebra for Distance Matrices »
Piotr Indyk · Sandeep Silwal -
2022 Poster: (Optimal) Online Bipartite Matching with Degree Information »
Anders Aamand · Justin Chen · Piotr Indyk -
2022 Poster: Exponentially Improving the Complexity of Simulating the Weisfeiler-Lehman Test with Graph Neural Networks »
Anders Aamand · Justin Chen · Piotr Indyk · Shyam Narayanan · Ronitt Rubinfeld · Nicholas Schiefer · Sandeep Silwal · Tal Wagner -
2021 Poster: Few-Shot Data-Driven Algorithms for Low Rank Approximation »
Piotr Indyk · Tal Wagner · David Woodruff -
2019 : Poster Session »
Lili Yu · Aleksei Kroshnin · Alex Delalande · Andrew Carr · Anthony Tompkins · Aram-Alexandre Pooladian · Arnaud Robert · Ashok Vardhan Makkuva · Aude Genevay · Bangjie Liu · Bo Zeng · Charlie Frogner · Elsa Cazelles · Esteban G Tabak · Fabio Ramos · François-Pierre PATY · Georgios Balikas · Giulio Trigila · Hao Wang · Hinrich Mahler · Jared Nielsen · Karim Lounici · Kyle Swanson · Mukul Bhutani · Pierre Bréchet · Piotr Indyk · samuel cohen · Stefanie Jegelka · Tao Wu · Thibault Sejourne · Tudor Manole · Wenjun Zhao · Wenlin Wang · Wenqi Wang · Yonatan Dukler · Zihao Wang · Chaosheng Dong -
2019 : Poster Session »
Jonathan Scarlett · Piotr Indyk · Ali Vakilian · Adrian Weller · Partha P Mitra · Benjamin Aubin · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová · Kristina Monakhova · Joshua Yurtsever · Laura Waller · Hendrik Sommerhoff · Michael Moeller · Rushil Anirudh · Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jayaraman Thiagarajan · Salman Asif · Michael Gillhofer · Johannes Brandstetter · Sepp Hochreiter · Felix Petersen · Dhruv Patel · Assad Oberai · Akshay Kamath · Sushrut Karmalkar · Eric Price · Ali Ahmed · Zahra Kadkhodaie · Sreyas Mohan · Eero Simoncelli · Carlos Fernandez-Granda · Oscar Leong · Wesam Sakla · Rebecca Willett · Stephan Hoyer · Jascha Sohl-Dickstein · Sam Greydanus · Gauri Jagatap · Chinmay Hegde · Michael Kellman · Jonathan Tamir · Nouamane Laanait · Ousmane Dia · Mirco Ravanelli · Jonathan Binas · Negar Rostamzadeh · Shirin Jalali · Tiantian Fang · Alex Schwing · Sébastien Lachapelle · Philippe Brouillard · Tristan Deleu · Simon Lacoste-Julien · Stella Yu · Arya Mazumdar · Ankit Singh Rawat · Yue Zhao · Jianshu Chen · Xiaoyang Li · Hubert Ramsauer · Gabrio Rizzuti · Nikolaos Mitsakos · Dingzhou Cao · Thomas Strohmer · Yang Li · Pei Peng · Gregory Ongie -
2019 : Learning-Based Low-Rank Approximations »
Piotr Indyk -
2019 Poster: Estimating Entropy of Distributions in Constant Space »
Jayadev Acharya · Sourbh Bhadane · Piotr Indyk · Ziteng Sun -
2019 Poster: Learning-Based Low-Rank Approximations »
Piotr Indyk · Ali Vakilian · Yang Yuan -
2019 Poster: Space and Time Efficient Kernel Density Estimation in High Dimensions »
Arturs Backurs · Piotr Indyk · Tal Wagner -
2018 Poster: Adversarially Robust Generalization Requires More Data »
Ludwig Schmidt · Shibani Santurkar · Dimitris Tsipras · Kunal Talwar · Aleksander Madry -
2018 Spotlight: Adversarially Robust Generalization Requires More Data »
Ludwig Schmidt · Shibani Santurkar · Dimitris Tsipras · Kunal Talwar · Aleksander Madry -
2017 Workshop: Deep Learning: Bridging Theory and Practice »
Sanjeev Arora · Maithra Raghu · Russ Salakhutdinov · Ludwig Schmidt · Oriol Vinyals -
2017 : Data-dependent methods for similarity search in high dimensions »
Piotr Indyk -
2017 Poster: Practical Data-Dependent Metric Compression with Provable Guarantees »
Piotr Indyk · Ilya Razenshteyn · Tal Wagner -
2017 Poster: Communication-Efficient Distributed Learning of Discrete Distributions »
Ilias Diakonikolas · Elena Grigorescu · Jerry Li · Abhiram Natarajan · Krzysztof Onak · Ludwig Schmidt -
2017 Oral: Communication-Efficient Distributed Learning of Discrete Distributions »
Ilias Diakonikolas · Elena Grigorescu · Jerry Li · Abhiram Natarajan · Krzysztof Onak · Ludwig Schmidt -
2016 Poster: Fast recovery from a union of subspaces »
Chinmay Hegde · Piotr Indyk · Ludwig Schmidt -
2015 Poster: Practical and Optimal LSH for Angular Distance »
Alexandr Andoni · Piotr Indyk · Thijs Laarhoven · Ilya Razenshteyn · Ludwig Schmidt -
2015 Poster: Differentially Private Learning of Structured Discrete Distributions »
Ilias Diakonikolas · Moritz Hardt · Ludwig Schmidt -
2014 Workshop: Optimal Transport and Machine Learning »
Marco Cuturi · Gabriel Peyré · Justin Solomon · Alexander Barvinok · Piotr Indyk · Robert McCann · Adam Oberman