Timezone: »
We propose a generic algorithmic building block to accelerate training of machine learning models on heterogeneous compute systems. Our scheme allows to efficiently employ compute accelerators such as GPUs and FPGAs for the training of large-scale machine learning models, when the training data exceeds their memory capacity. Also, it provides adaptivity to any system's memory hierarchy in terms of size and processing speed. Our technique is built upon novel theoretical insights regarding primal-dual coordinate methods, and uses duality gap information to dynamically decide which part of the data should be made available for fast processing. To illustrate the power of our approach we demonstrate its performance for training of generalized linear models on a large-scale dataset exceeding the memory size of a modern GPU, showing an order-of-magnitude speedup over existing approaches.
Author Information
Celestine Dünner (IBM Research)
Thomas Parnell (IBM Research)
Martin Jaggi (EPFL)
More from the Same Authors
-
2021 : Interpreting Language Models Through Knowledge Graph Extraction »
Vinitra Swamy · Angelika Romanou · Martin Jaggi -
2021 : Understanding Memorization from the Perspective of Optimization via Efficient Influence Estimation »
Futong Liu · Tao Lin · Martin Jaggi -
2021 : Understanding Memorization from the Perspective of Optimization via Efficient Influence Estimation »
Futong Liu · Tao Lin · Martin Jaggi -
2021 : WAFFLE: Weighted Averaging for Personalized Federated Learning »
Martin Beaussart · Mary-Anne Hartley · Martin Jaggi -
2022 : Data-heterogeneity-aware Mixing for Decentralized Learning »
Yatin Dandi · Anastasiia Koloskova · Martin Jaggi · Sebastian Stich -
2022 : Decentralized Stochastic Optimization with Client Sampling »
Ziwei Liu · Anastasiia Koloskova · Martin Jaggi · Tao Lin -
2022 : Towards Provably Personalized Federated Learning via Threshold-Clustering of Similar Clients »
Mariel A Werner · Lie He · Sai Praneeth Karimireddy · Michael Jordan · Martin Jaggi -
2022 : Diversity through Disagreement for Better Transferability »
Matteo Pagliardini · Martin Jaggi · François Fleuret · Sai Praneeth Karimireddy -
2022 : Scalable Collaborative Learning via Representation Sharing »
Frédéric Berdoz · Abhishek Singh · Martin Jaggi · Ramesh Raskar -
2022 Poster: Sharper Convergence Guarantees for Asynchronous SGD for Distributed and Federated Learning »
Anastasiia Koloskova · Sebastian Stich · Martin Jaggi -
2022 Poster: FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings »
Jean Ogier du Terrail · Samy-Safwan Ayed · Edwige Cyffers · Felix Grimberg · Chaoyang He · Regis Loeb · Paul Mangold · Tanguy Marchand · Othmane Marfoq · Erum Mushtaq · Boris Muzellec · Constantin Philippenko · Santiago Silva · Maria Teleńczuk · Shadi Albarqouni · Salman Avestimehr · Aurélien Bellet · Aymeric Dieuleveut · Martin Jaggi · Sai Praneeth Karimireddy · Marco Lorenzi · Giovanni Neglia · Marc Tommasi · Mathieu Andreux -
2022 Poster: Beyond spectral gap: the role of the topology in decentralized learning »
Thijs Vogels · Hadrien Hendrikx · Martin Jaggi -
2021 : [S11] Interpreting Language Models Through Knowledge Graph Extraction »
Vinitra Swamy · Angelika Romanou · Martin Jaggi -
2021 : Q&A with Martin Jaggi »
Martin Jaggi -
2021 : Learning with Strange Gradients, Martin Jaggi »
Martin Jaggi -
2021 Poster: Breaking the centralized barrier for cross-device federated learning »
Sai Praneeth Karimireddy · Martin Jaggi · Satyen Kale · Mehryar Mohri · Sashank Reddi · Sebastian Stich · Ananda Theertha Suresh -
2021 Poster: RelaySum for Decentralized Deep Learning on Heterogeneous Data »
Thijs Vogels · Lie He · Anastasiia Koloskova · Sai Praneeth Karimireddy · Tao Lin · Sebastian Stich · Martin Jaggi -
2020 Poster: Ensemble Distillation for Robust Model Fusion in Federated Learning »
Tao Lin · Lingjing Kong · Sebastian Stich · Martin Jaggi -
2020 Poster: SnapBoost: A Heterogeneous Boosting Machine »
Thomas Parnell · Andreea Anghel · Małgorzata Łazuka · Nikolas Ioannou · Sebastian Kurella · Peshal Agarwal · Nikolaos Papandreou · Haralampos Pozidis -
2020 Poster: Practical Low-Rank Communication Compression in Decentralized Deep Learning »
Thijs Vogels · Sai Praneeth Karimireddy · Martin Jaggi -
2020 Poster: Model Fusion via Optimal Transport »
Sidak Pal Singh · Martin Jaggi -
2019 Poster: PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization »
Thijs Vogels · Sai Praneeth Karimireddy · Martin Jaggi -
2019 Poster: Unsupervised Scalable Representation Learning for Multivariate Time Series »
Jean-Yves Franceschi · Aymeric Dieuleveut · Martin Jaggi -
2019 Poster: SySCD: A System-Aware Parallel Coordinate Descent Algorithm »
Nikolas Ioannou · Celestine Mendler-Dünner · Thomas Parnell -
2019 Spotlight: SySCD: A System-Aware Parallel Coordinate Descent Algorithm »
Nikolas Ioannou · Celestine Mendler-Dünner · Thomas Parnell -
2018 Poster: COLA: Decentralized Linear Learning »
Lie He · Yatao Bian · Martin Jaggi -
2018 Poster: Sparsified SGD with Memory »
Sebastian Stich · Jean-Baptiste Cordonnier · Martin Jaggi -
2018 Poster: Snap ML: A Hierarchical Framework for Machine Learning »
Celestine Dünner · Thomas Parnell · Dimitrios Sarigiannis · Nikolas Ioannou · Andreea Anghel · Gummadi Ravi · Madhusudanan Kandasamy · Haralampos Pozidis -
2018 Poster: Training DNNs with Hybrid Block Floating Point »
Mario Drumond · Tao Lin · Martin Jaggi · Babak Falsafi -
2017 Poster: Safe Adaptive Importance Sampling »
Sebastian Stich · Anant Raj · Martin Jaggi -
2017 Spotlight: Safe Adaptive Importance Sampling »
Sebastian Stich · Anant Raj · Martin Jaggi -
2017 Poster: Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees »
Francesco Locatello · Michael Tschannen · Gunnar Ratsch · Martin Jaggi -
2015 Poster: On the Global Linear Convergence of Frank-Wolfe Optimization Variants »
Simon Lacoste-Julien · Martin Jaggi -
2014 Workshop: OPT2014: Optimization for Machine Learning »
Zaid Harchaoui · Suvrit Sra · Alekh Agarwal · Martin Jaggi · Miro Dudik · Aaditya Ramdas · Jean Lasserre · Yoshua Bengio · Amir Beck -
2014 Poster: Communication-Efficient Distributed Dual Coordinate Ascent »
Martin Jaggi · Virginia Smith · Martin Takac · Jonathan Terhorst · Sanjay Krishnan · Thomas Hofmann · Michael Jordan -
2013 Workshop: Greedy Algorithms, Frank-Wolfe and Friends - A modern perspective »
Martin Jaggi · Zaid Harchaoui · Federico Pierucci