`

Timezone: »

 
Poster
End-to-End Differentiable Proving
Tim Rocktäschel · Sebastian Riedel

Wed Dec 06 06:30 PM -- 10:30 PM (PST) @ Pacific Ballroom #128

We introduce neural networks for end-to-end differentiable proving of queries to knowledge bases by operating on dense vector representations of symbols. These neural networks are constructed recursively by taking inspiration from the backward chaining algorithm as used in Prolog. Specifically, we replace symbolic unification with a differentiable computation on vector representations of symbols using a radial basis function kernel, thereby combining symbolic reasoning with learning subsymbolic vector representations. By using gradient descent, the resulting neural network can be trained to infer facts from a given incomplete knowledge base. It learns to (i) place representations of similar symbols in close proximity in a vector space, (ii) make use of such similarities to prove queries, (iii) induce logical rules, and (iv) use provided and induced logical rules for multi-hop reasoning. We demonstrate that this architecture outperforms ComplEx, a state-of-the-art neural link prediction model, on three out of four benchmark knowledge bases while at the same time inducing interpretable function-free first-order logic rules.

Author Information

Tim Rocktäschel (University of Oxford)

Tim is a Researcher at Facebook AI Research (FAIR) London, an Associate Professor at the Centre for Artificial Intelligence in the Department of Computer Science at University College London (UCL), and a Scholar of the European Laboratory for Learning and Intelligent Systems (ELLIS). Prior to that, he was a Postdoctoral Researcher in Reinforcement Learning at the University of Oxford, a Junior Research Fellow in Computer Science at Jesus College, and a Stipendiary Lecturer in Computer Science at Hertford College. Tim obtained his Ph.D. from UCL under the supervision of Sebastian Riedel, and he was awarded a Microsoft Research Ph.D. Scholarship in 2013 and a Google Ph.D. Fellowship in 2017. His work focuses on reinforcement learning in open-ended environments that require intrinsically motivated agents capable of transferring commonsense, world and domain knowledge in order to systematically generalize to novel situations.

Sebastian Riedel (University College London)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors