Timezone: »
Poster
Multiresolution Kernel Approximation for Gaussian Process Regression
Yi Ding · Risi Kondor · Jonathan Eskreis-Winkler
Gaussian process regression generally does not scale to beyond a few thousands data points without applying some sort of kernel approximation method. Most approximations focus on the high eigenvalue part of the spectrum of the kernel matrix, $K$, which leads to bad performance when the length scale of the kernel is small. In this paper we introduce Multiresolution Kernel Approximation (MKA), the first true broad bandwidth kernel approximation algorithm. Important points about MKA are that it is memory efficient, and it is a direct method, which means that it also makes it easy to approximate $K^{-1}$ and $\mathop{\textrm{det}}(K)$.
Author Information
Yi Ding (University of Chicago)
Risi Kondor (The University of Chicago)
Jonathan Eskreis-Winkler (University of Chicago)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Spotlight: Multiresolution Kernel Approximation for Gaussian Process Regression »
Thu. Dec 7th 01:15 -- 01:20 AM Room Hall C
More from the Same Authors
-
2020 Poster: A polynomial-time algorithm for learning nonparametric causal graphs »
Ming Gao · Yi Ding · Bryon Aragam -
2019 : Coffee break, posters, and 1-on-1 discussions »
Julius von Kügelgen · David Rohde · Candice Schumann · Grace Charles · Victor Veitch · Vira Semenova · Mert Demirer · Vasilis Syrgkanis · Suraj Nair · Aahlad Puli · Masatoshi Uehara · Aditya Gopalan · Yi Ding · Ignavier Ng · Khashayar Khosravi · Eli Sherman · Shuxi Zeng · Aleksander Wieczorek · Hao Liu · Kyra Gan · Jason Hartford · Miruna Oprescu · Alexander D'Amour · Jörn Boehnke · Yuta Saito · Théophile Griveau-Billion · Chirag Modi · Shyngys Karimov · Jeroen Berrevoets · Logan Graham · Imke Mayer · Dhanya Sridhar · Issa Dahabreh · Alan Mishler · Duncan Wadsworth · Khizar Qureshi · Rahul Ladhania · Gota Morishita · Paul Welle -
2017 : Covariant Compositional Networks for Learning Graphs »
Risi Kondor -
2017 : N-body Neural Networks: A General Compositional Architecture For Representing Multiscale Physical Systems »
Risi Kondor -
2016 Poster: The Multiscale Laplacian Graph Kernel »
Risi Kondor · Horace Pan -
2016 Oral: The Multiscale Laplacian Graph Kernel »
Risi Kondor · Horace Pan -
2015 : Multiresolution Matrix Factorization »
Risi Kondor -
2015 Workshop: Multiresolution methods for large-scale learning »
Inderjit Dhillon · Risi Kondor · Rob Nowak · Michael O'Neil · Nedelina Teneva -
2015 Demonstration: The pMMF multiresolution matrix factorization library »
Risi Kondor · Pramod Kaushik Mudrakarta · Nedelina Teneva -
2014 Poster: Permutation Diffusion Maps (PDM) with Application to the Image Association Problem in Computer Vision »
Deepti Pachauri · Risi Kondor · Gautam Sargur · Vikas Singh -
2013 Poster: Solving the multi-way matching problem by permutation synchronization »
Deepti Pachauri · Risi Kondor · Vikas Singh -
2012 Poster: Multiresolution analysis on the symmetric group »
Risi Kondor · Walter H Dempsey -
2009 Workshop: Learning with Orderings »
Tiberio Caetano · Carlos Guestrin · Jonathan Huang · Risi Kondor · Guy Lebanon · Marina Meila -
2008 Workshop: Algebraic and combinatorial methods in machine learning »
Risi Kondor · Guy Lebanon · Jason Morton -
2008 Mini Symposium: Algebraic methods in machine learning »
Risi Kondor · Guy Lebanon · Jason Morton -
2006 Poster: Gaussian and Wishart Hyperkernels »
Risi Kondor · Tony Jebara