Timezone: »
Generalized linear models (GLMs)---such as logistic regression, Poisson regression, and robust regression---provide interpretable models for diverse data types. Probabilistic approaches, particularly Bayesian ones, allow coherent estimates of uncertainty, incorporation of prior information, and sharing of power across experiments via hierarchical models. In practice, however, the approximate Bayesian methods necessary for inference have either failed to scale to large data sets or failed to provide theoretical guarantees on the quality of inference. We propose a new approach based on constructing polynomial approximate sufficient statistics for GLMs (PASS-GLM). We demonstrate that our method admits a simple algorithm as well as trivial streaming and distributed extensions that do not compound error across computations. We provide theoretical guarantees on the quality of point (MAP) estimates, the approximate posterior, and posterior mean and uncertainty estimates. We validate our approach empirically in the case of logistic regression using a quadratic approximation and show competitive performance with stochastic gradient descent, MCMC, and the Laplace approximation in terms of speed and multiple measures of accuracy---including on an advertising data set with 40 million data points and 20,000 covariates.
Author Information
Jonathan Huggins (Massachusetts Institute of Technology)
Ryan Adams (Princeton University)
Tamara Broderick (MIT)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Spotlight: PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference »
Thu. Dec 7th 01:10 -- 01:15 AM Room Hall C
More from the Same Authors
-
2021 : Measuring the sensitivity of Gaussian processes to kernel choice »
Will Stephenson · Soumya Ghosh · Tin Nguyen · Mikhail Yurochkin · Sameer Deshpande · Tamara Broderick -
2021 Workshop: Your Model is Wrong: Robustness and misspecification in probabilistic modeling »
Diana Cai · Sameer Deshpande · Michael Hughes · Tamara Broderick · Trevor Campbell · Nick Foti · Barbara Engelhardt · Sinead Williamson -
2021 Workshop: Learning Meaningful Representations of Life (LMRL) »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Anshul Kundaje · Barbara Engelhardt · Chang Liu · David Van Valen · Debora Marks · Edward Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang -
2021 Poster: Can we globally optimize cross-validation loss? Quasiconvexity in ridge regression »
Will Stephenson · Zachary Frangella · Madeleine Udell · Tamara Broderick -
2021 Poster: For high-dimensional hierarchical models, consider exchangeability of effects across covariates instead of across datasets »
Brian Trippe · Hilary Finucane · Tamara Broderick -
2020 : Panel & Closing »
Tamara Broderick · Laurent Dinh · Neil Lawrence · Kristian Lum · Hanna Wallach · Sinead Williamson -
2020 : Tamara Broderick »
Tamara Broderick -
2020 Poster: Approximate Cross-Validation for Structured Models »
Soumya Ghosh · Will Stephenson · Tin Nguyen · Sameer Deshpande · Tamara Broderick -
2020 Poster: Approximate Cross-Validation with Low-Rank Data in High Dimensions »
Will Stephenson · Madeleine Udell · Tamara Broderick -
2018 Workshop: All of Bayesian Nonparametrics (Especially the Useful Bits) »
Diana Cai · Trevor Campbell · Michael Hughes · Tamara Broderick · Nick Foti · Sinead Williamson -
2018 Poster: Random Feature Stein Discrepancies »
Jonathan Huggins · Lester Mackey -
2017 : Poster Spotlights »
Francesco Locatello · Ari Pakman · Da Tang · Thomas Rainforth · Zalan Borsos · Marko Järvenpää · Eric Nalisnick · Gabriele Abbati · XIAOYU LU · Jonathan Huggins · Rachit Singh · Rui Luo -
2017 Workshop: Advances in Approximate Bayesian Inference »
Francisco Ruiz · Stephan Mandt · Cheng Zhang · James McInerney · James McInerney · Dustin Tran · Dustin Tran · David Blei · Max Welling · Tamara Broderick · Michalis Titsias -
2017 Poster: Reducing Reparameterization Gradient Variance »
Andrew Miller · Nick Foti · Alexander D'Amour · Ryan Adams -
2016 : Tamara Broderick: Foundations Talk »
Tamara Broderick -
2016 Workshop: Advances in Approximate Bayesian Inference »
Tamara Broderick · Stephan Mandt · James McInerney · Dustin Tran · David Blei · Kevin Murphy · Andrew Gelman · Michael I Jordan -
2016 Workshop: Practical Bayesian Nonparametrics »
Nick Foti · Tamara Broderick · Trevor Campbell · Michael Hughes · Jeffrey Miller · Aaron Schein · Sinead Williamson · Yanxun Xu -
2016 Poster: Coresets for Scalable Bayesian Logistic Regression »
Jonathan Huggins · Trevor Campbell · Tamara Broderick -
2016 Poster: Edge-exchangeable graphs and sparsity »
Diana Cai · Trevor Campbell · Tamara Broderick -
2015 Workshop: Bayesian Nonparametrics: The Next Generation »
Tamara Broderick · Nick Foti · Aaron Schein · Alex Tank · Hanna Wallach · Sinead Williamson -
2015 Workshop: Advances in Approximate Bayesian Inference »
Dustin Tran · Tamara Broderick · Stephan Mandt · James McInerney · Shakir Mohamed · Alp Kucukelbir · Matthew D. Hoffman · Neil Lawrence · David Blei -
2015 Poster: Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes »
Ryan Giordano · Tamara Broderick · Michael Jordan -
2015 Spotlight: Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes »
Ryan Giordano · Tamara Broderick · Michael Jordan -
2014 Workshop: Advances in Variational Inference »
David Blei · Shakir Mohamed · Michael Jordan · Charles Blundell · Tamara Broderick · Matthew D. Hoffman -
2013 Poster: Optimistic Concurrency Control for Distributed Unsupervised Learning »
Xinghao Pan · Joseph Gonzalez · Stefanie Jegelka · Tamara Broderick · Michael Jordan -
2013 Poster: Streaming Variational Bayes »
Tamara Broderick · Nicholas Boyd · Andre Wibisono · Ashia C Wilson · Michael Jordan