Timezone: »
Linear Dynamical Systems (LDSs) are fundamental tools for modeling spatio-temporal data in various disciplines. Though rich in modeling, analyzing LDSs is not free of difficulty, mainly because LDSs do not comply with Euclidean geometry and hence conventional learning techniques can not be applied directly. In this paper, we propose an efficient projected gradient descent method to minimize a general form of a loss function and demonstrate how clustering and sparse coding with LDSs can be solved by the proposed method efficiently. To this end, we first derive a novel canonical form for representing the parameters of an LDS, and then show how gradient-descent updates through the projection on the space of LDSs can be achieved dexterously. In contrast to previous studies, our solution avoids any approximation in LDS modeling or during the optimization process. Extensive experiments reveal the superior performance of the proposed method in terms of the convergence and classification accuracy over state-of-the-art techniques.
Author Information
Wenbing Huang (Tencent AI Lab)
Mehrtash Harandi (Data61)
Mehrtash Harandi is a senior research scientist at Machine Learning Research Group (MLRG), Data61-CSIRO and a senior adjunct lecturer at Australian National University (ANU), Canberra, Australia. His main research interests are theoretical and computational methods in computer vision and machine learning with a focus on Riemannian geometry.
Tong Zhang (The Australian National University)
Lijie Fan (Tsinghua University)
Fuchun Sun (Tsinghua University)
Junzhou Huang (University of Texas at Arlington / Tencent AI Lab)
More from the Same Authors
-
2021 Poster: Functionally Regionalized Knowledge Transfer for Low-resource Drug Discovery »
Huaxiu Yao · Ying Wei · Long-Kai Huang · Ding Xue · Junzhou Huang · Zhenhui (Jessie) Li -
2021 Poster: Not All Low-Pass Filters are Robust in Graph Convolutional Networks »
Heng Chang · Yu Rong · Tingyang Xu · Yatao Bian · Shiji Zhou · Xin Wang · Junzhou Huang · Wenwu Zhu -
2020 Poster: Revisiting Parameter Sharing for Automatic Neural Channel Number Search »
Jiaxing Wang · Haoli Bai · Jiaxiang Wu · Xupeng Shi · Junzhou Huang · Irwin King · Michael R Lyu · Jian Cheng -
2020 Poster: Dirichlet Graph Variational Autoencoder »
Jia Li · Jianwei Yu · Jiajin Li · Honglei Zhang · Kangfei Zhao · Yu Rong · Hong Cheng · Junzhou Huang -
2020 Poster: RetroXpert: Decompose Retrosynthesis Prediction Like A Chemist »
Chaochao Yan · Qianggang Ding · Peilin Zhao · Shuangjia Zheng · JINYU YANG · Yang Yu · Junzhou Huang -
2020 Spotlight: RetroXpert: Decompose Retrosynthesis Prediction Like A Chemist »
Chaochao Yan · Qianggang Ding · Peilin Zhao · Shuangjia Zheng · JINYU YANG · Yang Yu · Junzhou Huang -
2020 Poster: Self-Supervised Graph Transformer on Large-Scale Molecular Data »
Yu Rong · Yatao Bian · Tingyang Xu · Weiyang Xie · Ying Wei · Wenbing Huang · Junzhou Huang -
2020 Poster: Deep Multimodal Fusion by Channel Exchanging »
Yikai Wang · Wenbing Huang · Fuchun Sun · Tingyang Xu · Yu Rong · Junzhou Huang -
2020 Poster: Adversarial Sparse Transformer for Time Series Forecasting »
Sifan Wu · Xi Xiao · Qianggang Ding · Peilin Zhao · Ying Wei · Junzhou Huang -
2019 Poster: Hyperparameter Learning via Distributional Transfer »
Ho Chung Law · Peilin Zhao · Leung Sing Chan · Junzhou Huang · Dino Sejdinovic -
2019 Poster: DTWNet: a Dynamic Time Warping Network »
Xingyu Cai · Tingyang Xu · Jinfeng Yi · Junzhou Huang · Sanguthevar Rajasekaran -
2019 Poster: NAT: Neural Architecture Transformer for Accurate and Compact Architectures »
Yong Guo · Yin Zheng · Mingkui Tan · Qi Chen · Jian Chen · Peilin Zhao · Junzhou Huang -
2019 Poster: Imitation Learning from Observations by Minimizing Inverse Dynamics Disagreement »
Chao Yang · Xiaojian Ma · Wenbing Huang · Fuchun Sun · Huaping Liu · Junzhou Huang · Chuang Gan -
2019 Spotlight: Imitation Learning from Observations by Minimizing Inverse Dynamics Disagreement »
Chao Yang · Xiaojian Ma · Wenbing Huang · Fuchun Sun · Huaping Liu · Junzhou Huang · Chuang Gan -
2018 : Poster presentations »
Simon Wiedemann · Huan Wang · Ivan Zhang · Chong Wang · Mohammad Javad Shafiee · Rachel Manzelli · Wenbing Huang · Tassilo Klein · Lifu Zhang · Ashutosh Adhikari · Faisal Qureshi · Giuseppe Castiglione -
2018 Poster: Discrimination-aware Channel Pruning for Deep Neural Networks »
Zhuangwei Zhuang · Mingkui Tan · Bohan Zhuang · Jing Liu · Yong Guo · Qingyao Wu · Junzhou Huang · Jinhui Zhu -
2018 Poster: Weakly Supervised Dense Event Captioning in Videos »
Xin Wang · Wenbing Huang · Chuang Gan · Jingdong Wang · Wenwu Zhu · Junzhou Huang -
2018 Poster: Adaptive Sampling Towards Fast Graph Representation Learning »
Wenbing Huang · Tong Zhang · Yu Rong · Junzhou Huang -
2017 Poster: Deep Subspace Clustering Networks »
Pan Ji · Tong Zhang · Hongdong Li · Mathieu Salzmann · Ian Reid -
2012 Poster: Compressive Sensing MRI with Wavelet Tree Sparsity »
Chen Chen · Junzhou Huang